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Unité de Psychiatrie
CHU ch. Nicolle
Rouen, France

AMSTERDAM • BOSTON • HEIDELBERG • LONDON
NEW YORK • OXFORD • PARIS • SAN DIEGO

SAN FRANCISCO • SINGAPORE • SYDNEY • TOKYO
Academic Press is an imprint of Elsevier



Academic Press is an imprint of Elsevier
525 B Street, Suite 1900, San Diego, California 92101-4495, USA
84 Theobald’s Road, London WC1X 8RR, UK

This book is printed on acid-free paper.

Copyright � 2007, Elsevier Inc. All Rights Reserved.

No part of this publication may be reproduced or transmitted in any form or by any
means, electronic or mechanical, including photocopy, recording, or any information
storage and retrieval system, without permission in writing from the Publisher.

The appearance of the code at the bottom of the first page of a chapter in this book
indicates the Publisher’s consent that copies of the chapter may be made for
personal or internal use of specific clients. This consent is given on the condition,
however, that the copier pay the stated per copy fee through the Copyright Clearance
Center, Inc. (www.copyright.com), for copying beyond that permitted by
Sections 107 or 108 of the U.S. Copyright Law. This consent does not extend to
other kinds of copying, such as copying for general distribution, for advertising
or promotional purposes, for creating new collective works, or for resale.
Copy fees for pre-2007 chapters are as shown on the title pages. If no fee code
appears on the title page, the copy fee is the same as for current chapters.
0074-7742/2007 $35.00

Permissions may be sought directly from Elsevier’s Science & Technology Rights
Department in Oxford, UK: phone: (þ44) 1865 843830, fax: (þ44) 1865 853333,
E-mail: permissions@elsevier.com. You may also complete your request on-line
via the Elsevier homepage (http://elsevier.com), by selecting ‘‘Support & Contact’’
then ‘‘Copyright and Permission’’ and then ‘‘Obtaining Permissions.’’

For information on all Academic Press publications
visit our Web site at www.books.elsevier.com

ISBN-13: 978-0-12-373737-3
ISBN-10: 0-12-373737-0

PRINTED IN THE UNITED STATES OF AMERICA
07 08 09 10 9 8 7 6 5 4 3 2 1



CONTENTS

Contributors ......................................................................... xi
Preface ................................................................................... xiii

Neurobiology of Dopamine in Schizophrenia

Olivier Guillin, Anissa Abi-Dargham, and Marc Laruelle

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
II. Dopaminergic System in the Brain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
III. Evidence Supporting Alterations of DA Systems in Schizophrenia . . . . 9
IV. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

The Dopamine System and the Pathophysiology of Schizophrenia:
A Basic Science Perspective

Yukiori Goto and Anthony A. Grace

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
II. Neuroanatomy of DA Systems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
III. DA Neuron Activity and Release. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
IV. Cellular Actions of DA .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
V. Roles of DA on Cognitive and AVective Functions . . . . . . . . . . . . . . . . . . . . . . . 51
VI. Development and Maturation of the DA System.. . . . . . . . . . . . . . . . . . . . . . . . . 53
VII. DA Deficits in Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55
VIII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Glutamate and Schizophrenia: Phencyclidine,
N-Methyl-D-Aspartate Receptors, and
Dopamine–Glutamate Interactions

Daniel C. Javitt

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
II. Glutamatergic Physiology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
III. Glutamatergic Models of Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
IV. Clinical Studies with NMDA Agonists. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

v



V. Potential Causes of Glutamatergic Dysfunction in Schizophrenia . . . . . . 90
VI. Future Research and Treatment Implications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

Deciphering the Disease Process of Schizophrenia:
The Contribution of Cortical GABA Neurons

David A. Lewis and Takanori Hashimoto

I. Working Memory Impairments: A Core
Feature of Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109

II. Working Memory Impairments and Altered
GABA Neurotransmission in the DLPFC .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 110

III. Potential Pathogenetic Mechanisms for Cell
Type-Specific Alterations in GABA Neurons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118

IV. Connecting Alterations in PV-Positive Neurons to Working
Memory Impairments: Decreased Gamma
Band Synchrony in Schizophrenia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

V. Treatment Implications. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 123
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 124

Alterations of Serotonin Transmission in Schizophrenia

Anissa Abi-Dargham

I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 133
II. Alteration of 5-HT Receptors in Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . 134
III. Pharmacological Manipulation of 5-HT Transmission

in Schizophrenia. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 141
IV. 5-HT–DA Interactions Relevant to Schizophrenia. . . . . . . . . . . . . . . . . . . . . . . . . 149
V. Discussions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 153

Serotonin and Dopamine Interactions in Rodents and Primates:
Implications for Psychosis and Antipsychotic

Drug Development

Gerard J. Marek

I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166
II. Dopamine and 5-HT Receptors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
III. Psychomotor Stimulants: A Dopamine–Serotonin Interaction

‘‘Case Study’’. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168
IV. Monoaminergic Nuclei Interactions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
V. Serotonin and Dopamine in the Thalamus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
VI. Dopamine and Serotonin in the Striatum.. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 174
VII. Dopamine and Serotonin in the Hippocampal Formation . . . . . . . . . . . . . . 176
VIII. Dopamine and Serotonin in the Prefrontal Cortex/Neocortex . . . . . . . . 177
IX. Animal Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 181

vi CONTENTS



X. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 183

Cholinergic Circuits and Signaling in the
Pathophysiology of Schizophrenia

Joshua A. Berman, David A. Talmage, and Lorna W. Role

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 194
II. ACh in Brain Regions Implicated in Schizophrenia. . . . . . . . . . . . . . . . . . . . . . 195
III. Physiology of ACh Circuits and Signaling in Brain Regions

Implicated in Schizophrenia Pathology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
IV. Developmental and Genetic Deficits in Schizophrenia That May

Influence Function and Assembly of Cholinergic Systems . . . . . . . . . . . . . . 203
V. Clinical and Preclinical Evidence for Deficits in Components of

Brain Cholinergic Systems in Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
VI. Evidence for Cholinergic Contributions to Schizophrenia

Pathophysiology from Clinical and
Preclinical Psychopharmacology. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

VII. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 214

Schizophrenia and the �7 Nicotinic Acetylcholine Receptor

Laura F. Martin and Robert Freedman

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 226
II. Neurobiological and Neurogenetic Evidence for a Link Between

the �7 Nicotinic Acetylcholine Receptor and Schizophrenia . . . . . . . . . . . 226
III. The Prototypic �7 Nicotinic Agonist, Nicotine, and Schizophrenia . . . 228
IV. The Search for an �7 Nicotinic Acetylcholine Receptor Agonist . . . . . . 233
V. The Phase 1 Study of DMXBA in Schizophrenia . . . . . . . . . . . . . . . . . . . . . . . . . 234

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237

Histamine and Schizophrenia

Jean-Michel Arrang

I. Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 248
II. The Histaminergic Neuronal System .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 249
III. Changes in the Histaminergic System in Schizophrenia. . . . . . . . . . . . . . . . . 264

CONTENTS vii



IV. Interactions of Antipsychotic Drugs with the Histaminergic System .. . 267
V. Role of Histaminergic Neurons in Schizophrenia. . . . . . . . . . . . . . . . . . . . . . . . . 269
VI. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 272

Cannabinoids and Psychosis

Deepak Cyril D’Souza

I. Introduction. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
II. Ancedotal Reports. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 291
III. Epidemiological Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297
IV. Pharmacological Studies. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 303
V. Cannabis and Psychosis: Causality . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
VI. Cannabinoid Receptor Dysfunction and Psychotic Disorders . . . . . . . . . . . 314
VII. Summary and Conclusions. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 318

Involvement of Neuropeptide Systems in
Schizophrenia: Human Studies
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PREFACE

‘‘Integrating theNeurobiology of Schizophrenia’’ is meant to bring together the cur-

rent knowledge implicating various neurotransmitter systems in the disease of

schizophrenia while placing a big emphasis on their interactions. The goal is to

build through each chapter one of the blocks leading to an integrative model

showing how one neurochemical alteration could contribute to the final common

pathway of another neurochemical dysregulation observed in this illness. It is

intended to be a reference for clinicians, scientists, and students who want to learn

more about the different neurotransmitters that may play a role in schizophrenia.

To anchor these discussions, we adopt the view that all neurotransmitter

alterations may lead to the dopaminergic alterations observed in this illness.

This point of view is an arbitrary oversimplification, but complex problems

may be better addressed once broken down into simple questions. This view is

suggested by the observation that alterations in dopamine transmission are

most directly linked to the symptoms of the illness as well as the response of

these symptoms to antipsychotic treatment. Recent research, mostly from imag-

ing, over the last decade, has greatly advanced the field by providing strong evi-

dence for few fundamental observations: studies have shown definitively that

subcortical D2 hyperstimulation is associated with positive symptoms and more

recent data has linked negative symptoms and cognitive disturbances with corti-

cal dopamine dysfunction. Studies have also shown conclusively that all effective

antipsychotics show significant D2 receptor occupancy. Despite the fact that

there is no clear relationship between occupancy and clinical response, and

there is no clear definition of the minimal occupancy needed to achieve thera-

peutic efficacy, this remains the most solid finding in antipsychotic therapy. We

previously reported that elevated levels of striatal intrasynaptic DA concentration

is predictive of fast response to antipsychotic drugs in patients with schizophrenia

(Abi-Dargham et al., 2000). Thus, the extent of the therapeutic response to D2

receptor antagonism is affected by the underlying pathology. Patients whose

pathology is associated with excessive stimulation of D2 receptors by DA respond

well to D2 receptor blockade. Conversely, patients who present a psychotic epi-

sode in the absence of detectable changes in synaptic DA levels are poor respon-

ders to current antipsychotic drugs. On the other hand, we did not observe a

relationship between subcortical D2 hyperstimulation and the response of nega-

tive symptoms to treatment at 6 weeks. Overall these findings suggest that D2
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hyperstimulation is relevant to the treatment of positive symptoms in most but

not all patients with schizophrenia and is probably irrelevant to negative symp-

toms. This highlights the complexity of the problem. A provocative study by

Seeman et al. (2006) has provided some support to the concept of common final

pathway through hyperstimulation of D2 receptors leading to psychosis,

essentially by increasing the high affinity states of dopamine D2 receptors.

In this book, we first present a comprehensive review of the alterations in do-

pamine (see the chapter by Guillin, Abi-Dargham, and Laruelle) and the under-

lying cellular and physiological events that may accompany them (see the chapter

by Goto and Grace). Then we attempt to review most of the neurobiological

alterations that may be implicated in schizophrenia and may contribute to the

symptoms and their treatment, either by contributing to the dopaminergic altera-

tions directly or indirectly, or by creating a different pathway to pathology. For

each system, the main findings in schizophrenia are reviewed, followed by a

discussion of how such findings may affect dopamine transmission, at least

to the extent that these interactions are known. Whenever possible, inferences

to treatment are made, resulting in a review of potential new therapeutic targets.

One possible conclusion that emerges from this review of various contributions

of many systems to schizophrenia pathology is that the dysregulation in DA may

be a consequence of other upstream events. New research has shed light on inter-

actions with glutamate and a deficient NMDA system leading to both DA altera-

tions observed in schizophrenia, including cortical deficit and subcortical excess.

These are reviewed by Daniel C. Javitt in his chapter. Similarly NMDA antago-

nists have been recently shown to engender some of the alterations in a subset of

GABA neurons in the dorsolateral prefrontal cortex that have been described in

schizophrenia (see the chapter by Lewis and Hashimoto), leading to a deficit in

the GABAA �2 subunit function and deficits in perisomatic inhibitory regulation

of pyramidal neurons. Thus, these glutamatergic and GABAergic alterations are

intimately linked and could lead to an inefficient control of cortical input onto

subcortical striatal dopamine, as well as inefficient corticocortical connectivity

and function. However, causality is difficult to assess in the presence of reciprocal

regulations. Alterations in striatal dopamine transmission may itself affect cortical

functioning by impairing glutamatergic flow of information in the corticostriatal-

thalamocotical loops as illustrated recently by the genetically altered mice over-

expressing striatal D2 leading to long-lasting cognitive deficits (Kellendonk

et al., 2006).

The role of 5-HT in schizophrenia is addressed by reviewing alterations in

clinical studies: postmortem, pharmacological challenges and imaging studies

(see the chapter by Abi-Dargham). As no clear patterns emerge for consistent

findings, the emphasis seems to be better placed on the role that serotonin may

play by modulating dopamine transmission in the critical brain regions impli-

cated in schizophrenia and/or how it may affect response independently of its
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role in modulating dopamine transmission. As reviewed by Marek in his chapter,

DA–5-HT interactions in the brain are present at different anatomical levels, are

mediated by different 5-HT receptor subtypes, and affect different aspects of DA

function. This complexity leads to a rich potential pharmacology of cognitive

enhancement with 5-HT1A partial agonists, 5-HT2A antagonists, 5-HT4 partial

agonists and 5-HT6 antagonists.

While there have been many advances in the field of genetics and imaging con-

tributing to our understanding of the basic pathophysiology of schizophrenia and

its treatment, much remains to be discovered. Our therapeutic interventions are

very limited in scope and in efficacy. The future seems to lie in all the unexplored

potential targets that emerge from a systematic review of all systems, from D1

agonists, to GABAA �2-specific allosteric modulators, to the many targets within

the glutamate and serotonin systems. The modulation of the histaminergic system

by antipsychotics and the antipsychotic-like properties of H3-receptor antago-

nists/inverse agonists support a role of histamine neurons in schizophrenia (see

the chapter by Arrang).

The following chapter reviews the evidence for a dysregulation of central cho-

linergic signaling in the pathophysiology of schizophrenia and suggests potential

therapeutic roles for cholinergic targets (chapter by Berman, Talmage, and Role).

This is followed by an in-depth review and analysis of one of these targets, the �7
nicotinic receptor (chapter by Martin and Freedman). The cannabinoid system

and its relevance to schizophrenia is another emerging and exciting field,

reviewed by D’Souza in his chapter. The connections between cannabinoids sys-

tem and other neurotransmitters including dopamine are likely to be relevant as

this system is present in all areas of the brain incriminated in schizophrenia, hip-

pocampus, amygdala, prefrontal cortex, and striatum, where it exerts direct con-

trol over transmitter release. Endocannabinoids are released from lipid

precursors in a receptor-dependent manner and serve as retrograde signaling

messengers in GABAergic and glutamatergic synapses, as well as modulators of

postsynaptic transmission, interacting with other neurotransmitters, including do-

pamine. A comprehensive review of clinical data linking alterations in neuropep-

tide systems to the etiology, pathophysiology, and treatment of schizophrenia in

the chapter by Cáceda, Kinkead, and Nemeroff follows with a summary of po-

tential therapeutic targets within this complex field. Genetic and postmortem

evidence suggest a role for BDNF in the pathophysiology of schizophrenia. Inter-

estingly, this neurotrophin controls the expression of the D3 receptor. The

evidence supporting a role for BDNF in schizophrenia and the role of this neuro-

trophin at modulating dopamine transmission are reviewed in the chapter by

Guillin, Demily, and Thibaut.

Finally, no review is complete without mention of the recent explosion of new

candidate genes that may be affected in schizophrenia. Gogos in his chapter

reviews the genetic contributions to schizophrenia and highlights the fact that
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the neurobiology resulting from small variations in common genes is likely to be

subtle and complex. This supports action at multiple molecular targets to reach

an effective threshold in a large fraction of patients.

As many receptors modulate the same intracellular pathways, either synergisti-

cally or in an opposing manner, the final common pathway in schizophrenia may

well be the signal transduction pathway(s) linked to these various neuroreceptor

systems. Developing the appropriate tools to study intracellular targets in the living

human brain is needed to understand how these alterations are integrated and lead

to common symptomatology.

This book emphasizes what we know as well as all the many areas that need

further research, that is, all the unknowns. In doing so, we hope it will provide

a useful tool to the clinician and the researcher alike.

ANISSA ABI-DARGHAM

OLIVIER GUILLIN
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This chapter is an update on the dopamine (DA) imbalance in schizophrenia,

including the evidence for subcortical hyperstimulation of D2 receptors underlying

positive symptoms and cortical hypodopaminergia-mediating cognitive disturbances

and negative symptoms. After a brief review of the anatomical neurocircuitry of this

transmitter system as a background, we summarize the evidence for dopaminergic

alterations deriving from pharmacological, postmortem, and imaging studies. This

evidence supports a prominent role for D2 antagonism in the treatment of positive

symptoms of schizophrenia and strongly suggests the need for alternative approaches

to address the more challenging problem of negative symptoms and cognitive

disturbances.

I. Introduction

Schizophrenia is a severe and chronic mental illness, associated with high

prevalence (about 1% of the general population). Symptoms of schizophrenia

typically emerge during adolescence or early adulthood. They are usually classi-

fied as positive, negative, or cognitive symptoms. Positive symptoms include:

hallucinations, delusions, and severe thought disorganization. Negative symptoms
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are a group of deficits comprising many dimensions such as aVect (flattening),
volition (apathy), speech (poverty), pleasure (anhedonia), and social life (with-

drawal). Cognitive symptoms, such as deficits in attention and memory, are

prominent features of the illness.

While the etiology and pathophysiology of schizophrenia remain unclear,

a large body of evidence suggests that alterations in several neurotransmitter

systems (e.g., dopamine, glutamatate, GABA, serotonin, cholinergic system,

and others) are involved in the pathophysiological processes leading to the

expression of these symptoms. Among these, the dopamine (DA) system has

received most attention.

The involvement of DA in the pathophysiology and treatment of schizo-

phrenia has been the subject of intense research eVorts over the last 50 years. The
first formulation of the DA hypothesis of schizophrenia proposed that hyper-

activity of DA transmission was responsible for the core or ‘‘positive’’ symptoms

(hallucinations, delusions) observed in this disorder (Carlsson and Lindqvist,

1963). This hypothesis was based on the correlation between clinical doses of

antipsychotic drugs and their potency to block DA D2 receptors (Creese et al.,

1976; Seeman and Lee, 1975) and by the psychotogenic eVects of DA-enhancing

drugs (for review see Angrist and van Kammen, 1984; Lieberman et al., 1987a).

Given the predominant localization of DA terminals and D2 receptors in sub-

cortical regions such as the striatum and the nucleus accumbens, the classical DA

hypothesis of schizophrenia was concerned mostly with these subcortical regions.

Over the years, the increasing awareness of the importance of enduring negative

and cognitive symptoms in this illness and of their resistance to D2 receptor antago-

nism has led to a reformulation of this classical DA hypothesis. Functional brain

imaging studies suggested that these symptoms might arise from altered prefrontal

cortex (PFC) functions (for reviews see Knable and Weinberger, 1997). A wealth of

preclinical studies emerged documenting the importance of prefrontal DA transmis-

sion at D1 receptors (the main DA receptor in the neocortex) for optimal PFC

performance (for review see Goldman-Rakic et al., 2000). Together, these observa-

tions led to the hypothesis that a deficit in DA transmission at D1 receptors in the

PFC might be implicated in the cognitive impairments and negative symptoms of

schizophrenia (Davis et al., 1991; Weinberger, 1987).

Thus, the current predominant view in that DA systems in schizophrenia

might be characterized by an imbalance between subcortical and cortical DA

systems: subcortical mesolimbic DA projections might be hyperactive (resulting in

hyperstimulation of D2 receptors and positive symptoms) while mesocortical DA

projections to the PFC might be hypoactive (resulting in hypostimulation of

D1 receptors, negative symptoms, and cognitive impairment). Furthermore, since

the seminal work of Pycock et al. (1980), many laboratories have described reciprocal

and opposite regulations between cortical and subcortical DA systems (for review

see Tzschentke, 2001). An abundant literature suggests that prefrontal DA activity

exerts an inhibitory influence on subcortical DA activity (Deutch et al., 1990;
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Karreman and Moghaddam, 1996; Kolachana et al., 1995; Wilkinson, 1997).

From these observations, it has been proposed that, in schizophrenia, both arms

of the DA imbalance model might be related, inasmuch as a deficiency in meso-

cortical DA function might translate into disinhibition of mesolimbic DA activity

(Weinberger, 1987).

Despite decades of eVort to generate experimental data supporting these hy-

potheses, documentation of abnormalities of DA function in schizophrenia has been

diYcult. Postmortem studiesmeasuring DA and its metabolites and DA receptors in

the brains of patients with schizophrenia yielded inconsistent or inconclusive results

(for review see Davis et al., 1991). Over the last few years, the development of new

brain imaging methods based on the principle of endogenous competition enabled

direct measurement of DA transmission at D2 receptor in the striatum (for review

see Laruelle, 2000a). Combined with studies that documented increased striatal

[18F]dopa accumulation in schizophrenia, application of these new techniques to the

study of schizophrenia provided new information into subcortical DA function

dysregulation in schizophrenia (for review see Weinberger and Laruelle, 2001).

Imaging studies have consistently demonstrated that schizophrenia is associated

with increased presynaptic activity of DA neurons projecting to the striatum. Thus,

the first arm of the dopaminergic imbalance hypothesis (hyperactivity in subcortical

territory) has received strong support from imaging studies.

On the other hand, the second arm of this hypothesis (DA deficit in cortical

projections) is still largely based on inferences from preclinical model or indirect

clinical evidence. In contrast to the striatum, presynaptic DA function in the PFC is

not at present accessible to noninvasive imaging techniques. D1 receptor availability

is the only parameter of prefrontal DA function that is currently quantifiable in vivo

with adequate reliability. Despite the limited information that this parameter pro-

vides to characterize DA function, PET imaging studies have described interesting

relationships between alterations of D1 receptor availability and cognitive functions

in schizophrenia (Abi-Dargham et al., 2002; Karlsson et al., 2002;Okubo et al., 1997).

The goal of this chapter is to review current evidence for DA dysregulation in

schizophrenia. Following a brief review of dopaminergic systems and receptors,

pharmacological, postmortem, and imaging data that implicate DA alterations in

schizophrenia will be presented.

II. Dopaminergic System in the Brain

A. DOPAMINERGIC PROJECTIONS

Dopaminergic projections are classically divided in nigrostriatal, mesolimbic,

and mesocortical systems (Lindvall and Björklund, 1983). The nigrostriatal system

projects from the substantia nigra (SN) to the dorsal striatum and has been
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classically involved in cognitive integration, habituation, sensorimotor coordina-

tion, and initiation of movement. The mesolimbic system projects from the

ventral tegmental area (VTA) to limbic structures such as ventral striatum,

hippocampus, and amygdala. The mesocortical system projects from the VTA

to cortical regions, mostly orbitofrontal, medial prefrontal, and cingulate cortices,

but also to the dorsolateral prefrontal cortex (DLPFC), temporal, and parietal

cortex. The mesolimbic and mesocortical systems are involved in regulation of

motivation, attention, and reward (Mogenson et al., 1980).

Corticostriatal–thalamocortical loops are important targets of DAmodulation

(Fig. 1). The general scheme of these loops involves projections from the cortex to

striatum to the internal segment of the globus pallidum (GPi) or the SN pars

DA

GABA

Glu

Ach

Basolateral
amygdala

Motor PFC
Cortex

Striatum
D1 D2

VL MD
Thalamus

GPe

STN
PPN

SNc
VTA

Gpi

SNr

NAC
Shell core

Ventral
pallidum

HIP

FIG. 1. Schematic representation of ventral limbic circuits implicated in the positive symptoms of

schizophrenia. The primary neurotransmitter content and the major projections are represented by

the colored arrows: blue, GABA; red, glutamate; green, DA. The nucleus accumbens (NAC) receives

major excitatory inputs from prefontal cortex (PFC), basolateral amygdala, and hippocampus (HIP)

and DA input from ventral tegmental area (VTA). NAC sends inputs to the ventral pallidum (VP)

which sends, among others, inputs to the mediodorsal nucleus (MD) of the thalamus. MD provides

excitatory inputs back to PFC. The NAC is a crucial node in this circuit where inputs from the PFC

are gated by excitatory projections from HIP and BLA and DA projections from VTA. It is proposed

that, in schizophrenia, increased DA activity induces perturbation in the information flow within this

circuit, in the modulation of this information by hippocampus and amygdala, and in the gating of

sensory information by the thalamus. If sustained, the increase in DA activity might lead to neuro-

plastic changes in this circuit resulting in the emergence of psychotic experience. Antipsychotics are

antagonists at the D2 receptor which is expressed in the motor circuits represented by the loops

involving the striatum (caudate and putamen), the external (GPe) and internal (GPi) globus pallidus,

the substancia nigra pars compacta (SNc) and pars reticulata (SNr), and the pedoculopontine nucleus

(PPN) and subthalamic nucleus (STN), explaining some of their motor side eVects.
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reticulata (SNr) to thalamus and back to the cortex. These loops have been

classified into ‘‘limbic’’ loops (medial prefrontal and orbitofrontal cortex–ventral

striatum–ventral pallidum–mediodorsal thalamic nuclei–cortex), associative loops

(DLPFC–head of the caudate–GPi/SNr–ventral anterior thalamic nuclei–cortex),

and motor loops (premotor and motor areas–putamen and body of the caudate–

GPi/SNr–ventral anterior thalamic nuclei back–cortex) (Alexander et al., 1986;

Ferry et al., 2000; Hoover and Strick, 1993; Joel and Weiner, 2000; Parent and

Hazrati, 1995). The amygdala and hippocampus provide significant inputs to the

ventral striatum, contributing to information integration into the limbic loop

(Everitt et al., 1991; Grace, 2000; Kunishio and Haber, 1994; Pennartz et al.,

1994). Animal studies suggest that the nucleus accumbens is the critical region in

which both typical and atypical antipsychotic drugs exert their antipsychotic

eVects (Chiodo and Bunney, 1983; Deutch et al., 1991; Robertson et al., 1994).

It is important to note that these diVerent corticostriatal–thalamocortical loops are

not completely segregated parallel loops. While corticostriatal–thalamic loops do

generally reenter the cortical area that provides input to the striatal subregions

involved in these loops, thus formed closed circuits and serving segregating pro-

cesses, they also project back to other areas of the cortex, forming open circuits and

serving integrative processes ( Joel and Weiner, 2000).

Within each loop, the striatum output reaches the GPi/SNR via a direct

pathway and via an indirect pathway that travels along the external segment of

the globus pallidus (GPe) and the subthalamic nuclei (STN), both pathways

providing antagonistic inputs to the GPi/SNr (Albin et al., 1989; DeLong et al.,

1985; Gerfen, 1992; Joel and Weiner, 2000). The view of the antagonistic nature

of the direct/stimulatory pathway versus the indirect/inhibitory pathway has

been criticized as oversimplistic (Parent and Hazrati, 1995). Nevertheless, it is

important to keep in mind that activation of medium spiny GABAergic neurons

in the striatum by corticostriatal glutamatergic aVerents can provide both

stimulatory or inhibitory influences on thalamocortical projection (Carlsson

et al., 2001).

DA modulates the flow of information within these loops. In primates, DA

cells from the VTA projects to the ventral striatum and cortex, the dorsal tier of

the SN includes cells that project to all striatal regions and cortex, and the ventral

tier of the SN projects widely throughout the dorsal striatum, but not to the

cortex (for review see Haber and Fudge, 1997). The striatum provides GABA

projections back to the VTA and SN. Projections from the VST to midbrain DA

neurons are not restricted to the VTA and dorsal tier of the SN (where DA neu-

rons projecting to the VST are located) but also terminate in the ventral tier

of SN (where DA neurons projecting to the dorsal striatum are located).

On the basis of these observations, Haber proposed that the DA system provides

a bridge by which information circulating in the ventral limbic corticostriatal–

thalamocortical loops spirals along nigrostriatal loops and feeds into the
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cognitive and sensorimotor loops, translating drives into actions (Haber and

Fudge, 1997; Haber et al., 2000).

B. DOPAMINERGIC RECEPTORS

The advent of molecular biology techniques in the late 1980s enabled the

cloning of these two receptors (Bunzow et al., 1988; Dearry et al., 1990; Monsma

et al., 1990; Zhou et al., 1990), as well as three newer DA receptors, termed D3, D4,

and D5 receptors (SokoloV et al., 1990; Sunahara et al., 1991; Tiberi et al., 1991;

Van Tol et al., 1991). On the basis of their sequence homologies, the five DA

receptor subtypes were classified into two categories (Table I), a D1-like family

(including D1 and D5 receptors), and a D2-like family (D2, D3, and D4 receptors)

(for reviews see Civelli et al., 1993; Gingrich and Caron, 1993; SokoloV et al., 1995).
This classification is also coherent with the initial distinction of D1 and D2

receptors on the basis of their signaling system, that is, their coupling to Gs and

Gi proteins and opposite eVect on adenylyl cyclase (Kebabian and Calne, 1979;

Spano et al., 1978). D2-like family receptors are both postsynaptic and presynaptic

autoreceptors (Diaz et al., 2000; Missale et al., 1998; Palermo-Neto, 1997).

DA receptors diVer in their regional localization in the human brain (for

reviews see Joyce and Meador-WoodruV, 1997; Meador-WoodruV et al., 1996).

D1 receptors show a widespread neocortical distribution, including the PFC, and

are also present in high concentration in striatum. D5 receptors are concentrated

in the hippocampus and entorhinal cortex (EC). D2 receptors are concentrated in

the striatum, with low concentration in medial temporal structures (hippocam-

pus, EC, amygdala) and thalamus. The concentration of D2 receptors in the PFC

is extremely low. D3 receptors are present in the striatum, where their concen-

tration is particularly high in the ventral striatum. D4 receptors are present in the

PFC and hippocampus, but not detected in the striatum (Lahti et al., 1998).

TABLE I

THE D1-LIKE AND D2-LIKE FAMILY OF DA RECEPTORS

Receptor

D1-like D2-like

D1 D5 D2 D3 D4

Sequence homology 60% 50–70%

Gene organization Intronless genes Genes with intron

Transduction Stimulate adenylyl cyclase Inhibit adenylyl cyclase

Pharmacology Moderate to low aYnity

for antipsychotics

High to moderate

aYnity for antipsychotics
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In the striatum, D2 receptors are preferentially found in enkephalin-rich

GABAergic neurons that participate in the indirect pathways, while D1 receptors

are most abundant in dynorphin/substance P GABAergic neurons that contrib-

ute to the direct pathways (Gerfen, 1992; Hersch et al., 1995; Le Moine et al.,

1990, 1991). In rodents, D3 receptors are expressed in the Island of Calleja and

in medium-sized spiny neurons of the rostral and ventromedial shell of nucleus

accumbens (Diaz et al., 1995), while its distribution in the striatum is more

widespread in humans (Gurevich et al., 1997). The magnitude of the segregation

versus coexpression of D1 and D2 receptors in striatal neurons is still a matter of

debate (Surmeier et al., 1992, 1996). In the VST, D3 receptors colocalize prefer-

entially on neurons expressing D1 receptors, substance P, dynorphin, and/or

neurotensin (Diaz et al., 1995; Ridray et al., 1998) and TrkB, the high-aYnity site

for the brain-derived neurotrophic factor (BDNF) (Guillin et al., 2001). In the

shell of the accumbens, activation of D1 and D3 receptors results in a synergistic

enhancement of substance P gene expression (Ridray et al., 1998). In view of the

high degree of coexpression of the two receptor subtypes in medium-sized spiny

neurons of this region, it seems likely that the synergism occurs at the single-cell

level and reflects the participation of the MAP kinase pathway of D3 receptor

signaling synergistically increased by the cAMP pathway of the D1 receptor. The

segregation of D2 and D1 receptors on diVerent and antagonistic pathways might

account for the fact that activation of these receptors is often synergistic at the

behavioral level (e.g., stimulation of both D1 and D2 receptors stimulate locomo-

tion), while their eVect on intracellular signaling (starting with adenylate cyclase

activity) are opposite in many regards. For example, stimulation of D1 and D2

receptors increases or decreases DARP32 phosphorylation, induces or blocks c-fos

expression, promotes or inhibitsN-methyl-D-aspartate (NMDA) receptor function,

respectively (Dunah and Standaert, 2001; Konradi, 1998; Leveque et al., 2000;

Nguyen et al., 1992; Nishi et al., 1997). Thus, activation of D2 receptors by DA

might provide an inhibitory influence to the indirect pathway and activation of D1

receptors byDAmight provide a stimulatory influence on the direct pathway. Both

eVects are expected to result in stimulation of thalamocortical neurons.

However, the action of DA on target neurons should not be viewed in terms of

simple excitation or inhibition. Unlike classical ‘‘fast’’ transmitters, DA does not

directly gate ion channels, but stimulation of DA G-protein–linked receptor

induces a cascade of intracellular signaling that results in modifying the response

of the cells to other transmitters. DA is neither ‘‘inhibitory’’ or ‘‘excitatory,’’ but its

action will depend on the state of the neurons at the time of the stimulation (Yang

et al., 1999). Cortical glutamatergic aVerents and DA projections converge on

GABAergic medium spiny neurons in the striatum, usually on dendritic shafts

and spines (for review see Kotter, 1994; Smith and Bolam, 1990; Starr, 1995).

At this convergence point, DA has potent modulatory eVects on glutamatate

(Glu) transmission (for review see Cepeda and Levine, 1998; Konradi and
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Heckers, 2003; Nicola et al., 2000). Overall, D2 receptor stimulation inhibits

NMDA-mediated Glu transmission and long-term potentiation (LTP), and

D1 receptor stimulation facilitates Glu transmission and LTP (Centonze et al.,

2001; Levine et al., 1996). The eVect of D2 receptor stimulation on Glu transmis-

sion involves both pre- and postsynaptic eVects: D2 stimulation inhibits Glu release

and reduces the excitability of medium spiny neurons (Cepeda and Levine, 1998;

Cepeda et al., 2001; Leveque et al., 2000; Nicola et al., 2000; Onn et al., 2000; Peris

et al., 1988; West and Grace, 2002). In contrast, D1 receptor stimulation generally

promotes NMDA function and medium spiny neuron excitability, more specifi-

cally when the cells are in a depolarized ‘‘upstate,’’ due to the convergence of

excitatory inputs (Dunah and Standaert, 2001; Flores-Hernandez et al., 2002;

Hernandez-Lopez et al., 1997; Marti et al., 2002; Morari et al., 1994; West and

Grace, 2002; Wilson and Kawaguchi, 1996; Fig. 2).

Cortex

VST

Glu

GABA

D2 D1+−

D2 blockers
(antipsychotic drugs)
Facilitate Glu transmission

D1 blockers
are not antipsychotic drugs
Impair Glu transmission

FIG. 2. Opposite modulations of NMDA transmission by D2 and D1 receptors in GABAergic

medium spiny neurons in the striatum. D2 and D1 receptors inhibit and facilitate, respectively,

Glu transmission. Thus, an excess of D2 receptor stimulation in schizophrenia would further impair

NMDA-mediated information flow from the cortex into the striatum. By blocking D2 receptors,

antipsychotic drugs promote NMDA transmission. Conversely, D1 receptor antagonists weaken

NMDA transmission and are not antipsychotic drugs.
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In the PFC, D1/5 receptors are localized both on pyramidal cells (dendritic

spines and shafts) and on axonal terminals of nondopaminergic neurons (Smiley

et al., 1994), while some data suggest that D4 receptors might be localized on

GABA interneurons (Mrzljak et al., 1996). DA modulates pyramidal cell excit-

ability, both directly and via GABAergic interneurons (Yang et al., 1999). Recent

data suggest that DA diVerently aVect GABAergic activity in the PFC via D1- or

D2-like mechanisms, whereas D1/5 and D2/4 receptor stimulation enhances

or inhibits GABAergic activity, respectively. Here again, it has been proposed

that DA increases the signal-to-noise ratio of glutamatergic aVerents (Seamans

et al., 2001).

III. Evidence Supporting Alterations of DA Systems in Schizophrenia

A. PHARMACOLOGICAL EVIDENCE

1. Aversive Pharmacological EVects

The psychotogenic eVect of amphetamine and other DA-enhancing drugs,

such as methylphenidate and L-dopa, is a cornerstone of the classical DA

hypothesis of schizophrenia. Two sets of observations are relevant to this issue.

First, repeated exposure to high doses of psychostimulants in nonschizophrenic

subjects might gradually induce paranoid psychosis. This well-documented ob-

servation shows that sustained increase in DA activity is psychotogenic. Second,

low doses of psychostimulants that are not psychotogenic in healthy subjects

might induce or worsen psychotic symptoms in patients with schizophrenia.

This observation indicates that patients with schizophrenia have an increased

vulnerability to the psychotogenic eVects of DA-enhancing drugs.

a. Amphetamine-Induced Psychosis in Nonschizophrenic Subjects. Although mentioned

in 1938 (Young and Scoville, 1938), amphetamine-induced psychosis was not

clearly recognized as a possible consequence of chronic amphetamine use until

1958 on the publication of a 42-case monograph by Connell (1958). In this

chapter, Connell provided the ‘‘classical’’ definition of amphetamine psychosis, as

‘‘a paranoid psychosis with ideas of references, delusions of persecution, auditory and visual

hallucinations in the setting of a clear sensorium’’ and concluded that ‘‘the mental picture

may be indistinguishable from acute or chronic paranoid schizophrenia’’ (Connell, 1958).

In the early 1970s, several studies experimentally induced amphetamine

psychosis in nonschizophrenic amphetamine-abusers in order to better document

the clinical pattern of this syndrome (Angrist and Gershon, 1970; Bell, 1973;

GriYth et al., 1968). These experiments formally established that sustained

psychostimulant exposure can produce paranoid psychosis in nonschizophrenic
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individuals. This reaction does not occur in the context of a delirium since

subjects maintain a clear sensorium during the episode and are able to recollect

the episode after its resolution. Since these studies were performed before the

conceptualization of the symptoms of schizophrenia into positive and negative

(Crow, 1980), they did not formally assess negative symptoms. These papers

only include anecdotal reports of emotional blunting, withdrawal, or alogia,

thereby, suggesting that sustained and excessive stimulation of DA systems does

not consistently induce what is now defined as the ‘‘negative’’ symptoms of

schizophrenia.

Ellinwood (Ellinwood 1967; Ellinwood et al., 1973) provided one of the most

insightful descriptions of amphetamine-induced psychosis by conceptualizing the

condition as a continuum that evolves from the gradual onset of paranoid

tendencies to delusional paranoia. The first step is characterized by stimulation

of interpretative mental activities (great attention to details, intense feeling of

curiosity, repetitive searching, and sorting behavior). Ellinwood sees in Sherlock

Holmes, a regular cocaine user, a prototypical example of the endless search for

meanings (my mind rebels at stagnation). With increased exposure, these paranoid

tendencies and interests for the minutiae develop into an intermediate stage,

which is characterized by marked enhancement of perceptual acuity, sustained

‘‘pleasurable’’ suspiciousness, and compulsive probing behavior. Finally, this

inquisitive behavior is reversed and projected to others (persecution), leading to

paranoia and ideas of references. The ‘‘enhancement of sensitive acuity’’ devel-

ops into hallucinations, initially auditory, then visual and tactile. The sensorium

remains clear until toxic delirium is reached. Thought disorders might manifest

toward the end of the continuum near the toxic stage. Kapur (2003) recently

reformulated and modernized the Ellinwood ‘‘Sherlock Holmes’’ theory by

defining schizophrenia psychosis as a state of aberrant salience.

Another important property of psychostimulants is their ability to induce

reverse tolerance or ‘‘sensitization’’ (Kalivas et al., 1993; Robinson and Becker,

1986). Long-term sensitization to psychostimulants is a process whereby repeated

exposure to these drugs results in an enhanced response on subsequent exposures.

The relevance of this process for the pathophysiology of schizophrenia has been

reviewed (Laruelle, 2000b; Lieberman et al., 1997). Subjects who abused psycho-

stimulants and experienced stimulant-induced psychotic episodes are reported to

remain vulnerable to low doses of psychostimulants (Connell, 1958; Ellinwood

et al., 1973; Sato et al., 1983). In these subjects, exposure to psychostimulants at

doses that do not normally produce psychotic symptoms can trigger a recurrence

of these symptoms. The similarity between these patients and the patients with

schizophrenia in terms of vulnerability to the psychotogenic eVects of psychosti-
mulants has led to the theorization that schizophrenia might be associated with an

‘‘endogenous’’ sensitization process (Glenthoj and Hemmingsen, 1997; Laruelle,

2000b; Lieberman et al., 1990).
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Considerable research eVorts have been devoted to the identification of neu-

ronal substrates involved in sensitization. Several studies have shown that sensiti-

zation is associated with increased stimulant-induced DA release in the axonal

terminal fields (for references see Laruelle, 2000b). A brain imaging study con-

firmed that, in humans, sensitization to the eVects of amphetamine involves

increased amphetamine-induced DA release (Boileau et al., 2003). The imaging

studies reviewed below show that patients with schizophrenia display an enhanced

amphetamine-induced DA release, supporting the notion of an endogenous

sensitization process of subcortical DA system in schizophrenia.

b. Psychotogenic EVects of Amphetamine in Schizophrenic Patients. A number of

studies reviewed by Lieberman et al. (1987b) provided evidence that patients with

schizophrenia, as a group, display increased sensitivity to the psychotogenic

eVects of acute psychostimulant administration. In other terms, some, but not

all patients with schizophrenia present emergence or worsening of psychotic

symptoms after acute exposure to psychostimulants at doses that do not induced

psychosis in healthy subjects. The psychotic response appears to be state depen-

dent. First, patients who responded with a psychotic reaction to a psychostimu-

lant challenge during an acute episode failed to show such a response when they

were in remission. Second, the propensity to present a psychotic reaction to a

psychostimulant challenge is predictive of relapse on antipsychotic discontinua-

tion. Thus, the clinical response to stimulants might ‘‘reveal’’ an active phase of

the illness that is not readily identifiable by the clinical symptomatology in the

absence of a psychostimulant administration.

2. Therapeutic Pharmacological EVects

Since the recognition in 1952 of the antipsychotic properties of chlorproma-

zine (Delay et al., 1952), antipsychotic medications have fundamentally altered

the course and the prognosis of schizophrenia. They have proven eVective at

reducing the severity of symptoms and preventing episodes of illness exacerba-

tion. To date, D2 receptor antagonism is the only pharmacological property

shared by all antipsychotic drugs. The clinical dose of these drugs is related

to their aYnity for D2 receptors. D2 receptor antagonism appears both neces-

sary and suYcient for antipsychotic action (as demonstrated by the selective

D2 receptor antagonist amisulpride). The fact that patients with schizophrenia

improve following administration of D2 receptor antagonists is one of the few

irrefutable pieces of evidence in schizophrenia (Weinberger, 1987).

D2 receptor blockade by antipsychotic drugs has been confirmed by a large

number of imaging studies (reviewed in Talbot and Laruelle, 2002). In general,

these studies failed to observe a relationship between the degree of D2 receptor

occupancy and the quality of the clinical response. However, most studies

reported doses achieving more than 50% occupancy. The minimum occupancy

required for a therapeutic response remains somewhat uncertain. Two studies
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performed with low doses of relatively selective D2 receptor antagonists (haloper-

idol and raclopride) suggest that a minimum of 50% occupancy is required to

observe a rapid clinical response (Kapur et al., 2000; Nordstrom et al., 1993).

Imaging studies have repeatedly confirmed the existence of a striatal D2 receptor

occupancy threshold (about 80%) above which extrapyramidal symptoms (EPS)

are likely to occur (Farde et al., 1992). Thus, these data suggest the existence of a

therapeutic window between 50% and 80% striatal D2 receptor occupancy.

Within this window, the relationship between occupancy and response is unclear,

presumably because the variability in endogenous DA (Frankle et al., 2004).

Furthermore, the occupancy threshold required for therapeutic eVects might

diVer among drugs.

The introduction of a second generation of antipsychotic (SGA) drugs since

the early 1990s has not fundamentally altered the prominence of D2 receptor

antagonism in the current treatment of schizophrenia. Most SGAs also potently

interact with other receptors, such as the serotonin 5-HT2A receptors, but the

possibility to achieve an ‘‘atypical’’ profile with a pure D2 receptor antagonist,

such as amisulpride, indicates that serotonin pharmacological eVects are not

absolutely required to produce this eVect.
On the other hand, imaging studies have generally reported lower occupan-

cies of striatal D2 receptors at therapeutic doses of SGAs compared to first

generation antipsychotic drugs (FGAs). This seems to be especially true for

amisulpride, clozapine, and quetiapine, which provide 50–60% D2 receptor

occupancy range at clinically eVective doses (for review and references see

Abi-Dargham and Laruelle, 2005). In contrast, studies with FGAs often reported

occupancies exceeding 75%. Thus, a parsimonious hypothesis to account for the

SGA superiority is that, in general, clinical results obtained after moderate

occupancies (50–75%) are better than after high occupancies (75–100%), and

that, for a variety of reasons, SGAs tend to maintain lower occupancies than

FGAs. The alternate hypothesis is that the D2 receptor occupancy required for

therapeutic eVects is lower in SGAs than FGAs. Should the alternate hypothesis

be true, the mechanisms responsible for the gain in the occupancy–eYcacy

relationship of SGAs remain to be fully elucidated.

A potentially important synergistic eVect of 5-HT2A and D2 receptor antago-

nism is to increase prefrontal DA, an eVect not observed with selective D2 or

5-HT2A receptor antagonists administered alone (Gessa et al., 2000; Ichikawa et al.,

2001; Melis et al., 1999; Pehek and Yamamoto, 1994; Youngren et al., 1999). This

eVect might be mediated by the stimulation of 5-HT1A receptors: it is blocked by

5-HT1A antagonists and is also observed following the combination of 5-HT1A

receptor agonism and D2 receptor antagonism (Ichikawa et al., 2001; Rollema

et al., 2000). Aripiprazole, clozapine, quetiapine, and ziprasidone are also 5-HT1A

partial agonists, and this additional property might also contribute to their ability

to increase prefrontal DA. As discussed in Section III.B, a decreased prefrontal
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DA function might contribute to the cognitive deficits present in patients with

schizophrenia, and it is possible that an increase in prefrontal DA induced by

SGAs might mediate some of the modest cognitive improvements induced

by these drugs (Keefe et al., 1999). Yet, it is unclear whether this increase in

prefrontal DA, documented as an acute response in animal studies, is sustained

during the course of treatment in patients with schizophrenia.

B. POSTMORTEM STUDIES

The discovery of the antipsychotic eVect of D2 receptor blockade inspired

numerous postmortem studies seeking to determine whether schizophrenia was

associated with altered parameters of DA transmission. These postmortem stud-

ies have for the most part failed to provide definitive answers, partly because of

the confounding eVects of antemortem antipsychotic treatment.

1. Tissue DA and HVA

Direct measures of tissue content of DA and its metabolites have failed to

demonstrate consistent and reproducible abnormalities (for review see Davis

et al., 1991; Reynolds, 1989). It should be noted, however, that some studies

have reported higher DA tissue levels in samples from patients with schizophre-

nia in subcortical regions such as caudate (Owen et al., 1978), nucleus accumbens

(Mackay et al., 1982), or amygdala (Reynolds, 1983).

2. D2 Receptors

Increased density of striatal D2 receptors in patients with schizophrenia has

been a consistent finding in a large number of postmortem studies (Cross et al.,

1983; Dean et al., 1997; Hess et al., 1987; Joyce et al., 1988; Knable et al., 1994;

Lahti et al., 1996; Lee et al., 1978; Mackay et al., 1982; Marzella et al., 1997; Mita

et al., 1986; Owen et al., 1978; Reynolds et al., 1987; Ruiz et al., 1992; Seeman et al.,

1984, 1987, 1993; Sumiyoshi et al., 1995). Because chronic neuroleptic adminis-

tration upregulates D2 receptor density (Burt et al., 1977), it is likely that these

postmortem findings are related to prior neuroleptic exposure rather than to the

disease process per se. In light of these very consistent results with [3H]spiperone, it

is interesting to note that the striatal binding of [3H]raclopride has been reported

to increase in many studies (Dean et al., 1997; Marzella et al., 1997; Ruiz et al.,

1992; Sumiyoshi et al., 1995), but normal in several others (Knable et al., 1994;

Lahti et al., 1996; Seeman et al., 1993), even in patients exposed to neuroleptic

drugs prior to death. This observation suggests that the increase in [3H]raclo-

pride binding is of lower magnitude than the one of [3H]spiperone binding.

This discrepancy might simply reflect the observation that, for reasons that are

not currently understood, antipsychotic drugs upregulate more [3H]spiperone
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than [3H]raclopride binding to D2 receptors (Schoots et al., 1995; Tarazi et al.,

1997).

3. D3 Receptors

A significant increase in D3 receptor number in VST samples from patients

with schizophrenia who were oV neuroleptics at the time of death has been

reported in one study (Gurevich et al., 1997). In contrast, in patients who had

been treated with neuroleptics up to the time of death, D3 receptor levels did not

diVer significantly from those of controls (Gurevich et al., 1997). These data were

interpreted as indicating that antipsychotics downregulate the D3 receptor in

schizophrenic patients who otherwise have a higher density of this receptor in the

VST. The D3 receptor gene expression is under the control of a neutrophin,

called BDNF, that is synthesized either in the VTA and the PFC and released in

the VST, where it maintains the expression of the D3 receptor (Guillin et al.,

2001). One study (Takahashi et al., 2000) has shown increased and two decreased

(Hashimoto et al., 2005; Weickert et al., 2003) of BDNF levels in the brain of

patients with schizophrenia. D3 receptors are upregulated in the presence of hyper-

dopaminergic tone (Bordet et al., 1997; Fauchey et al., 2000; Guillin et al., 2001;

Le Foll et al., 2002), under the control of the BDNF, whose synthesis is in turn

under the control of the activity of neurons projecting from the PFC or the VTA in

the VST.

4. D4 Receptors

On the basis of ligand subtraction techniques, several studies have reported

increased D4-like receptors in schizophrenia (Marzella et al., 1997; Murray et al.,

1995; Seeman et al., 1993; Sumiyoshi et al., 1995). These findings were not

confirmed by other studies using the same technique (Lahti et al., 1996; Reynolds

and Mason, 1994), nor by a study using [3H]NGD 94-1, a selective D4 ligand

(Lahti et al., 1998). Moreover, the hypothesis that clozapine might act by blocking

the D4 receptor was not supported by a clinical trial with the D4 selective agent

L745,870 (Kramer et al., 1997).

5. D1 Receptors

Striatal D1 receptors have generally been reported to be unaltered in schizo-

phrenia ( Joyce et al., 1988; Pimoule et al., 1985; Reynolds and Czudek, 1988;

Seeman et al., 1987), although one study reported decreased density (Hess et al.,

1987). In the PFC, one study reported no changes (Laruelle et al., 1990) and one

reported a nonsignificant increase (Knable et al., 1996).

6. DA Transporter

A large number of studies have reported unaltered DA transporter density

(DAT) in the striatum of patients with schizophrenia (Chinaglia et al., 1992;
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Czudek and Reynolds, 1989; Hirai et al., 1988; Joyce et al., 1988; Knable et al.,

1994; Pearce et al., 1990).

7. Tyrosine Hydroxylase Immunolabeling

A recent and interesting postmortem finding regarding DA parameters in

patients with schizophrenia is the observation of decreased tyrosine hydroxylase

(TH)-labeled axons in layers III and VI of the EC and in layer VI of the PFC, a

finding suggesting that schizophrenia might be associated with deficit in DA trans-

mission in the EC and PFC (Akil et al., 1999, 2000). This finding was clearly

unrelated to premortem neuroleptic exposure. Benes et al. (1997) observed no signi-

ficant changes in TH-positive varicosities in the DLPFC. In the anterior cingulate

region (layer II), these authors observed a significant shift in the distribution of TH

varicosities from large neurons to small neurons.

In conclusion, postmortem measurements of indices of DA transmission gen-

erated a number of consistent observations in the striatum: (1) The binding of

radioligand to D2-like receptors in the striatum of patients with schizophrenia is

increased, but the magnitude of this increase varies with the type of radioligands

used, and it is diYcult to exclude the contribution of premortem antipsychotic

exposure in this set of findings. (2) Striatal DAT and D1 receptors density is

unaVected in schizophrenia. Several interesting observations such as increase in

D3 receptors in the ventral striatum and alteration in TH immunolabeling in

several cortical regions do not appear to be consequences of premortem

neuroleptic exposure, but these findings have yet to be independently confirmed.

C. IMAGING STUDIES

1. Striatal DA Function

The development of PET and SPECT imaging techniques in the late 1980s

made possible, for the first time, the examination of DA function in vivo in patients

with schizophrenia never exposed to antipsychotic drugs (Fig. 3).

a. Striatal D2 and D1 Receptors. Striatal D2 receptor density in schizophrenia

has been extensively studied with PET and SPECT imaging. In a meta-analysis

(Weinberger and Laruelle, 2001), 17 imaging studies comparing D2 receptor

parameters in patients with schizophrenia have been analyzed (included a total of

245 patients and 231 control subjects, Table II) (Abi-Dargham et al., 1998, 2000b;

Blin et al., 1989; Breier et al., 1997; Crawley et al., 1986; Hietala et al., 1994b;

Knable et al., 1997; Laruelle et al., 1996; Martinot et al., 1990, 1991; Pilowsky

et al., 1994; Wong et al., 1986). Updated with a study (Yang et al., 2004), this meta-

analysis revealed a small (12%) but significant elevation of striatal D2 receptors

in untreated patients with schizophrenia. No clinical correlates of increased

D2 receptor-binding parameters could be identified. Studies performed with
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butyrophenones (n ¼ 7) show an eVect size of 0.96 � 1.05, significantly larger

than the eVect size observed with other ligands (benzamides and lisuride, n ¼ 11,

0.19� 0.25, p¼ 0.02). This diVerence might be due to diVerences in vulnerability
of the binding of these tracers to endogenous DA and elevation of endogenous

DA in schizophrenia (Seeman, 1988; Seeman et al., 1989). Interestingly, the fact

that D2 receptor levels are increased in healthy monozygotic twin compared

to dizygotic twin of patients with schizophrenia has lead to the conclusion that

the caudate DA D2 receptor upregulation is related to genetic risk for schizo-

phrenia (Hirvonen et al., 2005). Imaging studies of D1 receptors have consistently

failed to detect abnormalities of D1 receptor availability in the striatum of

patients with schizophrenia (Abi-Dargham et al., 2002; Karlsson et al., 2002;

Okubo et al., 1997).

b. Striatal Amphetamine-Induced DA Release. The decrease in [11C]raclopride

and [123I]IBZM in vivo binding following acute amphetamine challenge has been

well validated as a measure of the change in D2 receptor stimulation by DA due

to amphetamine-induced DA release (Breier et al., 1997; Laruelle et al., 1997b;

Villemagne et al., 1999) (Table III).

Our results (Abi-Dargham et al., 1998; Laruelle et al., 1996), which have been

independently replicated (Breier et al., 1997), showed that the amphetamine-

induced decrease in [11C]raclopride or [123I]IBZM binding is elevated in un-

treated patients with schizophrenia compared to well-matched controls (Fig. 4).

A significant relationship was observed between the magnitude of this eVect and
transient induction or worsening of positive symptoms. This exaggerated response

of the DA system to amphetamine was observed in both first episode/drug-naive

patients and previously treated patients (Laruelle et al., 1999), but was larger in

FIG. 3. D2 receptor-binding image with PET and [11C]raclopride. MRI images (above) and PET

images (below).
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TABLE II

IMAGING STUDIES OF STRIATAL D2 RECEPTOR PARAMETERS IN DRUG-NAIVE AND DRUG-FREE PATIENTS WITH SCHIZOPHRENIA

Class radiotracer Radiotracer Study Controls, n

Patients,

n (DN/DF)a Method Outcome

Controls

(n.mean � SD)b
Patients

(n.mean � SD)b p

EVect

sizec
Ratio

SD

Butyrophenones [11C]NMSP Wong et al.

(1986)

11 15 (10/5) Kinetic Bmax 100 � 50 253 � 105 <0.05 3.06 2.10

[76Br]SPI Crawley et al.

(1986)

8 16 (12/4) Ratio S/C 100 � 14 111 � 12 <0.05 0.79 0.86

[76Br]SPI Blin et al.

(1989)

8 8 (0/8) Ratio S/C 100 � 14 104 � 14 ns 0.28 1.00

[76Br]SPI Martinot et al.

(1990)

12 12 (0/12) Ratio S/C 100 � 11 101 � 15 ns 0.14 1.41

[11C]NMSP Tune et al.

(1993)

17 10 (8/2) Kinetic Bmax 100 � 80 173 � 143 0.08 0.91 1.79

[11C]NMSP Nordstrom

et al. (1995)

7 7 (7/0) Kinetic Bmax 100 � 25 133 � 63 ns 1.33 2.50

[11C]NMSP Okubo et al.

(1997)

18 17(10/7) Kinetic k3 100 � 21 104 � 16 ns 0.19 0.74

Benzamides [11C]raclopride Farde et al.

(1990)

20 18 (18/0) Equilibrium Bmax 100 � 29 107 � 18 ns 0.23 0.63

[11C]raclopride Hietala et al.

(1994a)

10 13 (0/13) Equilibrium Bmax 100 � 22 112 � 43 ns 0.55 1.99

[123I]IBZM Pilowsky et al.

(1994)

20 20 (17/3) Ratio S/FC 100 � 8 99 � 7 ns �0.07 0.82

(Continued )
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TABLE II (Continued )

Class radiotracer Radiotracer Study Controls, n

Patients,

n (DN/DF)a Method Outcome

Controls

(n.mean � SD)b
Patients

(n.mean � SD)b p

EVect

sizec
Ratio

SD

[123I]IBZM Laruelle et al.

(1996)

15 15 (1/14) Equilibrium BP 100 � 26 115 � 33 ns 0.56 1.25

[123I]IBZM Knable et al.

(1997)

16 21 (1/20) Equilibrium BP 100 � 29 97 � 38 ns �0.12 1.31

[11C]raclopride Breier et al.

(1997)

12 11 (6/5) Equilibrium BP 100 � 18 100 � 30 ns 0.02 1.69

[123I]IBZM Abi-Dargham

et al. (1998)

15 15 (2/13) Equilibrium BP 100 � 20 102 � 49 ns 0.09 2.50

[123I]IBZM Abi-Dargham

et al. (2000b)

18 18 (8/10) Equilibrium BP 100 � 13 104 � 14 ns 0.33 1.11

[123I]IBZM Yang et al. (2004) 12 11(11/0) Ratio S/C 100 � 11 101 � 11 ns 0.09 1

Ergot alk. [76Br]lisuride Martinot et al.

(1991)

14 19 (10/9) Ratio S/C 100 � 10 104 � 12 ns 0.45 1.21

[76Br]lisuride Martinot et al.

(1994)

10 10 (2/8) Ratio S/C 100 � 10 100 � 13 ns 0.00 1.29

aDN, drug naive; DF, drug free.
bMean normalized to mean of control subjects.
cEVect size calculated as (mean patients – mean controls)/SD controls.

1
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TABLE III

IMAGING STUDIES OF STRIATAL PRESYNAPTIC DA PARAMETERS IN DRUG-NAIVE AND DRUG-FREE PATIENTS WITH SCHIZOPHRENIA

Parameter Study Controls, n

Patients,

n (DN/DF/T)a
Radiotracer

(per challenge) Method Outcome

Controls

(n, mean � SD)b
Patients

(n, mean � SD)b p

EVect

sizec

DOPA

accumulation

Reith et al.

(1994)

13 5 (4/0/1) [18F]DOPA Kinetic k3 100 � 23 120 � 15 <0.05 0.91

Hietala et al.

(1995)

7 7 (7/0/0) [18F]DOPA Graphical Ki 100 � 11 117 � 20 <0.05 1.54

Dao-Castellana

et al. (1997)

7 6 (2/4/0) [18F]DOPA Graphical Ki 100 � 11 103 � 40 ns 0.30

Lindstrom et al.

(1999)

10 12 (10/2) [11C]DOPA Graphical Ki 100 � 17 113 � 12 <0.05 0.77

Hietala et al.

(1999)

13 10 (10/0) [18F]DOPA Graphical Ki 100 � 14 115 � 28 <0.05 1.09

Elkashef et al.

(2000)

13 19 (0/9/10) [18F]DOPA Ratio Ki 100 � 11.7 92.4 � 9.7 <0.05 �0.65

Meyer-Lindenberg

et al. (2002)

6 6 (0/6/0) [18F]DOPA Graphical Ki 100 � 9.7 119 � 9.7 <0.02 1.96

McGowan et al.

(2004)

12 16 (0/0/16) [18F]DOPA Graphical Ki 100 � 9.3 115 � 8.2 0.001 1.6

Amphetamine-

induced DA

release

Laruelle et al.

(1996)

15 15 (2/13/0) [123I]IBZM/

amphetamine

Equilibrium Delta BP 100 � 113 271 � 221 <0.05 1.51

Breier et al.

(1997)

18 18 (8/10/0) [11C]raclopride/

amphetamine

Equilibrium Delta BP 100 � 43 175 � 82 <0.05 1.73

Abi-Dargham

et al. (1998)

16 21 (1/20/0) [123I]IBZM/

amphetamine

Equilibrium Delta BP 100 � 88 194 � 145 <0.05 1.07

(Continued )
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TABLE III (Continued )

Parameter Study Controls, n

Patients,

n (DN/DF/T)a
Radiotracer

(per challenge) Method Outcome

Controls

(n, mean � SD)b
Patients

(n, mean � SD)b p

EVect

sizec

Baseline DA

concentration

Abi-Dargham

et al. (2000b)

18 18 (8/10/0) [123I]IBZM/

�MPT

Equilibrium Delta BP 100 � 78 211 � 122 <0.05 1.43

DAT density Laakso et al.

(2000)

9 9 (9/0/0) [18F]CFT Ratio S/C 100 � 12 101 � 13 <0.05 0.11

Laruelle et al.

(2000a)

22 22 (2/20/0) [123I]CIT Equilibrium BP 100 � 17 93 � 20 <0.05 �0.43

Hsiao et al. (2003) 12 12 (12/0/0) [99mTc]TRODAT Ratio S/Occ 100 � 18 104 � 21 ns 0.22

aDN, drug naive; DF, drug free; T, treated with antipsychotics.
bMean normalized to mean of control subjects.
cEVect size calculated as (mean patients � mean controls)/SD controls.

2
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patients experiencing an episode of illness exacerbation than in patients in

remission at the time of the scan (Laruelle et al., 1999). This exaggerated DA

reactivity did not appear to be a nonspecific eVect of stress, as higher self-reports of
anxiety before the experiments were not associated with larger eVect of amphet-

amine on [123I]IBZM binding. Furthermore, nonpsychotic subjects with unipolar

depression, who reported levels of anxiety similar to the schizophrenic patients at

the time of the scan, showed normal amphetamine-induced displacement of [123I]

IBZM (Parsey et al., 2001).

These findings have generally been interpreted as reflecting an increase in

synaptic DA following amphetamine in the schizophrenic group. Another inter-

pretation of these observations would be that schizophrenia is associated with

increased aYnity of D2 receptors for DA.

c. DAT Transporters. Three imaging studies (listed in Table II) have confirmed

the in vitro observation of normal striatal DAT density in schizophrenia (Laakso et al.,

2000; Laruelle et al., 2000b). In addition, no association between amphetamine-

induced DA release and DAT density was found (Laruelle et al., 2000b), suggesting

that the increased presynaptic output revealed by the studies reviewed above is not

due to higher terminal density.
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FIG. 4. EVect of amphetamine (0.3 mg/kg) on [123I]IBZM binding in healthy controls and

untreated patients with schizophrenia. The y axis shows the percentage decrease in [123I]IBZM-

binding potential induced by amphetamine, which is a measure of the increased occupancy of D2

receptors by DA following the challenge. Increased stimulation of D2 receptors in schizophrenia was

associated with transient worsening or emergence of positive symptoms.
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d. Vesicular Monoamine Transporter. Using the radiotracer [11C]DTBZ (Taylor

et al., 2000) were not able to show any diVerence in vesicularmonoamine transporter

binding potential (BP) in patients with schizophrenia compared to healthy subjects.

e. Baseline Occupancy of Striatal D2 Receptors by DA. In rodents, acute depletion

of synaptic DA is associated with an acute increase in the in vivo binding of

[11C]raclopride or [123I]IBZM to D2 receptors (for review see Laruelle, 2000a).

The increased binding is observed in vivo but not in vitro, indicating that it is not

due to receptor upregulation (Laruelle et al., 1997a) but to removal of endogenous

DA and unmasking of D2 receptors previously occupied by DA. A similar acute

DA depletion technique paired with D2 receptor imaging in humans using

�HPT has been developed to assess the degree of occupancy of D2 receptors

by DA (Laruelle et al., 1997a). In schizophrenia, there was a higher occupancy of

D2 receptors by DA in patients experiencing an episode of illness exacerbation,

compared to healthy controls (Table III) (Abi-Dargham et al., 2000b). Again

assuming normal aYnity of D2 receptors for DA, the data are consistent with

higher DA synaptic levels in patients with schizophrenia. Higher synaptic DA

levels in patients with schizophrenia were predictive of good therapeutic response

of these symptoms following 6 weeks of treatment with atypical antipsychotic

medications (Abi-Dargham et al., 2000b).

f. Striatal DOPA Decarboxylase Activity. The eight studies which have reported

rates of DOPA decarboxylase in patients with schizophrenia, using [18F]DOPA

or [11C]DOPA are summarized in Table II. Six out of eight studies reported

increased accumulation of DOPA in the striatum of patients with schizophrenia

(Dao-Castellana et al., 1997; Elkashef et al., 2000; Hietala et al., 1995, 1999;

Lindstrom et al., 1999; McGowan et al., 2004; Meyer-Lindenberg et al., 2002;

Reith et al., 1994), one reported no change (Dao-Castellana et al., 1997) and one

study reported reduced [18F]DOPA striatal uptake (Elkashef et al., 2000). Three

studies involved first-episode schizophrenia, and all three showed an increase of

DOPA in the striatum (Hietala et al., 1995, 1999; Lindstrom et al., 1999). Interest-

ingly, a recent study observed a relationship between poor prefrontal activation

during theWisconsin Card Sorting task and elevated [18F]DOPA accumulation in

the striatum, suggesting a link between alteration of the dorsolateral PFC function

and increased striatal DA activity in schizophrenia (Meyer-Lindenberg et al.,

2002). In rats as in anesthetized pigs, increases in aromatic L-amino acid decor-

boxylase (AADC) activity in vitro and in vivo have been reported following acute

treatment with DA antagonists (Cho et al., 1997; Danielsen et al., 2001; Zhu et al.,

1993). Conversely, acute treatment with the DA agonist apomorphine decreases
11C-DOPA influx in monkeys (Torstenson et al., 1998). Evidence for such eVects in
humans, however, is extremely limited. Thus, in the only comprehensive study to

date Grunder et al. (2003) reported a decrease in [18F]DOPA uptake in nine
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patients with schizophrenia following subchronic treatment with haloperidol,

suggesting that chronic neuroleptic administration will tend to decrease AADC

activity and hence DA synthesis. Interestingly, acute administration of antipsy-

chotics increases DA neurons firing whereas chronic administration decreases

the number of spontaneously active DA neurons in the rat SN (Grace, 1991),

suggesting that the diVerent eVects of antipsychotics on AADC activity in the

living brain could reflect such phenomena.

2. Prefrontal DA Function and Schizophrenia

Indirect evidence supports the hypothesis that a deficit in prefrontal DA

function might contribute to prefrontal impairment in schizophrenia. Abundant

preclinical evidences have documented the importance of prefrontal DA function

for cognition (for review see Goldman-Rakic, 1994; Goldman-Rakic et al., 2000).

This important role has been recently confirmed in humans, by the repeated obser-

vation that the carriers of the high-activity allele of cathecol-O-methyltransferase

(COMT), an enzyme involved in DA metabolism, display lower performance in

various cognitive tasks compared to carriers of the allele that induces lower con-

centration of DA in PFC (for review see Goldberg andWeinberger, 2004). Clinical

studies have suggested a relationship between low cerebrospinal fluid homovanillic

acid, a measure reflecting low DA activity in the PFC, and poor performance at

tasks involving WM in schizophrenia (Kahn et al., 1994; Weinberger et al., 1988).

Administration of DA agonists might have beneficial eVects on the pattern of

prefrontal activation measured with PET during these tasks (Daniel et al., 1991;

Dolan et al., 1995). While these observations are consistent with the hypothesis of a

hypodopaminergic state in the PFC of patients with schizophrenia, they do not

constitute direct evidence.

The only parameter of DA transmission that is currently quantifiable using

noninvasive in vivo studies is D1 receptor availability. Three PET studies of

prefrontal D1 receptor availability in patients with schizophrenia have recently

been published. Two studies were performed with [11C]SCH 23390. The first

reported decreased [11C]SCH 23390 BP in the PFC (Okubo et al., 1997) and the

other reported no change (Karlsson et al., 2002). One study was performed with

[11C]NNC 112 (Abi-Dargham et al., 2002) and reported increased [11C]NNC 112

BP in the DLPFC and no change in other regions of the PFC such as the medial

prefrontal cortex (MPFC) or the orbitofrontal cortex. In patients with schizophrenia,

increased [11C]NNC 112 binding in the DLPFC was predictive of poor

performance on a working memory task (Fig. 5; Abi-Dargham et al., 2002). Many

potential factors including patient heterogeneity and diVerences in the boundaries

of the sampled regions might account for these discrepancies. However, severity of

deficits at tasks involving WM were reported to be associated with both decreased
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PFC [11C]SCH23390 BP in one study (Okubo et al., 1997) and increased PFC [11C]

NNC 112 BP in another one (Abi-Dargham et al., 2000a), suggesting that both

alterations might reflect a common underlying deficit.

Because of the prevalent view that schizophrenia is associated with a deficit in

prefrontal DA activity, the impact of acute and subchronic DA depletion on the

in vivo binding of [11C]SCH 23390 and [11C]NNC 112 is highly relevant to the

interpretation of these data (Guo et al., 2001). Acute DA depletion does not aVect
the in vivo binding of [11C]NNC 112, but results in decreased in vivo binding of

[3H]SCH 23390, a paradoxical response that might be related to DA depletion-

induced translocation of D1 receptors from the cytoplasmic to cell surface

compartment (Dumartin et al., 2000; Laruelle, 2000a; Scott et al., 2002). In

contrast, chronic DA depletion is associated with increased in vivo [11C]NNC

112 binding, presumably reflecting a compensatory upregulation of D1 recep-

tors. Interestingly, chronic DA depletion did not result in enhanced in vivo binding

of [3H]SCH 23390, an observation maybe related to opposite eVects of receptors
upregulation and externalization.
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FIG. 5. Relationship between upregulation of D1 receptors in the DLPFC of untreated patients

with schizophrenia and performance at WM task (3-back adjusted hit rate or AHR, lower values

represent poorer performance).
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Thus, the increase in DLPFC [11C]NNC 112 BP observed in schizophrenia

might be related to a compensatory but ineYcient upregulation of D1 receptors

following sustained DA depletion, and it is conceivable that such an upregulation

might not be detectable with [11C]SCH 23390. Studies with both radiotracers on

the same patients are required to clarify this issue.

IV. Conclusions

The development of new imaging methods aiming at measuring presynaptic

activity in striatal DA aVerents provided data consistent with the view that

schizophrenia is associated with hyperactivity of subcortical transmission at

D2 receptors (Fig. 6). These results are consistent with the known mode of action
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FIG. 6. Striatal dopaminergic synapse, summary of findings: evidence for excess DA transmission

derives from pre- and postsynaptic studies. Excess DA transmission may impair glutamatergic NMDA

transmission by a D2-mediated impaired presynaptic release of glutamate and an imbalance of D1/D2

opposing eVects onto NMDA transmission. See text and tables for references.
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of current antipsychotic treatment (D2 receptor blockade), with the psychoto-

genic eVects of sustained stimulation of DA function by psychostimulants, and

with the ‘‘classical’’ DA hypothesis of schizophrenia derived from these observa-

tions. In addition, these results suggest that the DA hyperactivity of subcortical

systems is episodic in nature, and account for only some aspects of positive

symptomatology. On the other hand, imaging methods might suggest that hypo-

dopaminergia in the DLPFC participate to do pathophysiology of cognitive

symptoms endured by patients with schizophrenia.
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The dopamine system has been a subject of intense investigation due to its role

in a number of normal functions and its disruption in pathological conditions.

Thus, the dopamine system has been shown to play a major role in cognitive,

aVective, and motor functions, and its disruption has been proposed to underlie the

pathophysiology of several major psychiatric and neurological disorders, including

schizophrenia, Parkinson’s disease, drug abuse, and attention deficit/hyperactivity

disorder. Although these studies have continued to define the basic functional

principles of the dopamine system in the mammalian brain, we are still at the initial

stages in unraveling the complex role of this transmitter system in regulating

behavioral processes. Accumulating evidence suggests that dopamine modulates

excitatory and inhibitory neurotransmission, and moreover aVects synaptic

plasticity induced within the circuits of its target brain regions. It is this role in

synaptic plasticity that has associated the dopamine system with aspects of cognitive

function involving learning and memory. In this chapter, we summarize recent

findings relevant to the role of the dopamine system in psychiatric disorders at

cellular, anatomical, and functional levels. In particular, we will focus on the

regulation of dopamine neuronactivity states andhow this impacts dopamine release

in cortical and subcortical systems, and the physiological and behavioral impact of

dopamine receptor stimulation in the postsynaptic targets of these neurons. A brief

summary of recent findings regarding the development and maturation of DA
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system and how this relates to the pathophysiology of psychiatric disorders are given,

and finally models of dopamine system disruption in schizophrenia and how

therapeutic approaches impact on dopamine system dynamics is presented.

I. Introduction

Dopamine (DA) is the most basic of the catecholamine neurotransmitters in

the central nervous system. Since the identification of DA as an independent

neurotransmitter in the brain (Carlsson, 1959; Carlsson et al., 1958), a large

number of studies from molecular to behavioral levels has been done to under-

stand the functional roles of DA. However, there is general agreement from

research to suggest that the role of DA is not to mediate direct synaptic driving

of neurotransmission in the brain, but instead to modulate excitatory and inhibi-

tory neurotransmission (Kupfermann, 1979). Therefore, DA is now considered to

be a neuromodulator.

The reason for this substantial level of interest is due to its involvement in a

number of neurological and psychiatric disorders including Parkinson’s disease

(Hornykiewicz, 1971; Lloyd and Hornykiewicz, 1970) and schizophrenia (Faurbye,

1968; Fischer, 1970). The loss of DA neurons in the nigrostriatal system has been

shown to underlie the symptoms of Parkinson’s disease (Hornykiewicz, 1971; Lloyd

and Hornykiewicz, 1970), whereas excessive DA release has been suggested in the

pathophysiology of schizophrenia. The latter is based on studies showing that DA

agonists such as amphetamine induce psychosis similar to that of schizophrenia

patients (Connell, 1958; Snyder, 1972) as well as the fact that antipsychotic drugs

used for the treatment of schizophrenia are DA receptor antagonists (Carlsson,

1974; Seeman, 1987). These studies suggest that proper DA signaling in the brain

is critical for cognitive and aVective functions as well as motor control, which are

disrupted in these neurological and psychiatric disorders.

In this chapter, we summarize recent findings of the DA system at cellular,

pharmacological, physiological, and functional levels, and how these findings

relate DA system function to the pathophysiology of schizophrenia.

II. Neuroanatomy of DA Systems

DA neurons are located in the mesencephalon and project into the forebrain

along three major pathways.

The nigrostriatal system is composed of DA neurons located in the substantia

nigra pars compacta (SNc) that project into the dorsal striatum (Anden et al., 1964;
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Bedard et al., 1969). This is the system that is believed to have a principal

involvement in motor control, since degeneration of DA neurons in the SNc is

the primary pathology of Parkinson’s disease (Hornykiewicz, 1971; Lloyd and

Hornykiewicz, 1970). Of particular importance in the functional significance of

nigrostriatal DA projections is its involvement in motor learning and habit

formation (Graybiel, 1998; Jog et al., 1999). However, animal and human studies

have also revealed that the nigrostriatal DA projection is also involved in non-

motor cognitive functions (Carbon and Marie, 2003; Graybiel, 1997; Schultz,

2002).

The mesolimbic DA system is composed of DA neurons located in the ventral

tegmental area (VTA) that project to the ventral striatum (VS) including the

nucleus accumbens, olfactory tubercle, and limbic structures such as the baso-

lateral amygdala and hippocampus (HPC) (Brinley-Reed and McDonald, 1999;

Fallon and Moore, 1978; Fallon et al., 1978; Scatton et al., 1980; Voorn et al.,

1986). DA release in the amygdala and HPC are thought to be involved in

emotional learning (Bissiere et al., 2003; Jellestad et al., 1986; Rosenkranz and

Grace, 2002) and long-term memory (Li et al., 2003; Lisman and Grace, 2005;

Otmakhova and Lisman, 1996), respectively. The VS is the brain region where

limbic and cortical inputs converge, and information encoded on these brain

structures is integrated to organize goal-directed behavior (Groenewegen et al.,

1996; Mogenson et al., 1980). As such, the mesolimbic DA projections to the VS

modulate this information integration, and thereby influence motor behavior.

In particular, these DA projections into the VS are considered to be crucial

for motivation and reward seeking (Everitt and Robbins, 2005; Iversen, 1984).

Finally, the mesocortical DA system is composed of DA neurons also located in

the VTA that project to the prefrontal cortex (PFC), anterior cingulate, and

entorhinal cortex in rodents (Fallon et al., 1978; Thierry et al., 1973) as well as

additional neocortical and even cerebellar areas in primates and humans (De

Keyser et al., 1989; Lewis et al., 1987; Melchitzky and Lewis, 2000; Moore et al.,

2003). The PFC is considered to be the highest center of cognition (Funahashi,

2001; Fuster, 1997; Goldman-Rakic, 1995; Knight et al., 1995; Robbins, 2000;

Shimamura, 2000), and DA release in the PFC is essential for its function. As such,

a number of cognitive functions such as short-term memory (Funahashi et al., 1993;

Goldman-Rakic, 1995), attention (Gorenstein et al., 1989; Knight et al., 1995; Muir

et al., 1996), future planning (Baker et al., 1996; Ingvar, 1985; Owen et al., 1990),

and set shifting (Milner, 1963; Owen et al., 1993) have been proposed to be

mediated by the PFC, and interruption of the mesocortical DA innervation of

the PFC is known to produce impairments in these functions (Floresco et al., 2006;

Ragozzino, 2002; Sawaguchi and Goldman-Rakic, 1994; Seamans et al., 1998).

The VTA is a heterogeneous structure consisting of DA neurons and gamma-

aminobutyric acid (GABA) neurons. Some of these GABA neurons are interneur-

ons, whereas other GABA neurons are projection neurons that innervate both the
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PFCandVS. Anatomical and physiological studies (Carr and Sesack, 2000; Floresco

et al., 2001, 2003; Lisman andGrace, 2005; Sesack and Carr, 2002) have shown that

the mesolimbic and mesocortical DA pathways are organized into two independent

closed loops.

In the mesocortical DA system, PFC pyramidal neurons (in layers V and VI)

are reported to project selectively onto VTA DA neurons that project back to the

PFC (Fig. 1; Carr and Sesack, 2000; Sesack and Carr, 2002). In addition, PFC

aVerents are also shown to target GABA interneurons that in turn regulate the

activity of DA neurons that project to the VS as well as GABA neurons that

project directly to the VS (Fig. 1; Carr and Sesack, 2000; Sesack and Carr, 2002).

Consequently, this anatomically closed loop induces higher DA release in the

PFC during periods of PFC activation, while at the same time it suppresses DA

release in the VS.

In contrast, the mesolimbic DA system also forms another closed loop circuit

with the HPC and VS (Fig. 2). Thus, the HPC send excitatory projections into

the VS (Groenewegen et al., 1987; Kelley and Domesick, 1982), which in turn

regulates other basal ganglia nuclei including the ventral pallidum and peduncu-

lopontine tegmentum (Floresco et al., 2003). Through this loop, activity within

the HPC eVerents is positioned to control DA release in the VS (Floresco et al.,

2001).

Glu

GABA

DA
PFC

NAc

VTA

FIG. 1. Schematic diagram of the relationship between the PFC, VS, and the DA system. The

reciprocal interaction between the PFC and VTA would allow PFC activation to selectively induce

DA release in the PFC and suppress DA release in the VS simultaneously. Glu and NAc denote

glutamate and nucleus accumbens, respectively. Reprinted from Sesack and Carr, copyright (2002),

with permission from Elsevier.
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III. DA Neuron Activity and Release

DA neurons are known to exhibit two types of spike firing patterns: tonic and

burst spike firing (Grace and Bunney, 1984a,b). Tonic spike firing is the baseline

spontaneous activity state that is driven by an endogenous pacemaker conduc-

tance (Grace and Bunney, 1984b) and does not depend on an excitatory driving

force. Thus, tonic spike firing is still observed in an in vitro brain slice preparation

in which the aVerent inputs onto the DA neurons are transected. In contrast,

transient, burst spike firing is known to be triggered by external stimuli, especial-

ly those associated with the presentation of unexpected reward or sensory signals

that predict rewards (Schultz et al., 1993). Furthermore, DA neurons exhibit

transient suppression of tonic spike firing with aversive stimuli or omission of

expected rewards (Tobler et al., 2003; Ungless et al., 2004). However, it is still

controversial regarding whether only reward-associated stimuli can evoke burst

spike firing in DA neurons (e.g., burst spike firing evoked by aversive stimuli;

Guarraci and Kapp, 1999; Mantz et al., 1989). Phasic burst spike firing is regulated

HPC

PFCVS

VP

VTA VTAPPTgLimbic inputs

+ (Novelty)

+ (Goals)

−

−

Loop

+ (Salience)

+
PFC

FIG. 2. Functional interactions between the HPC and the VTA that can mediate novelty detection

and incorporation into memory. It is proposed that the incorporation of an object or an event into

memory is dependent on two aspects: novelty and salience. In this model, HPC aVerents regulate
activity within the VS and its aVerent basal ganglia nuclei including the ventral pallidum (VP). These

structures, in turn, can modulate VTA DA neuron activity. It is proposed that novelty detection in the

HPC will cause excitation of VTA DA neurons via this pathway. When the HPC novelty-dependent

excitation of the VTA occurs in coincidence with salience-dependent activation of pedunculopontine

tegmental (PPTg) input to the VTA neurons, the resultant enhanced VTA DA input to the HPC will

trigger incorporation into memory. Triangles, circles, and diamonds indicate glutamate, GABA, and

DA projections, respectively. Adapted from Lisman and Grace (2005).
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by excitatory glutamatergic inputs onto DA neurons arising from other brain

structures including the PFC (Au-Young et al., 1999; Gariano and Groves, 1988),

subthalamic nucleus (Chergui et al., 1994; Smith and Grace, 1992), and glutama-

tergic/cholinergic aVerents from the pedunculopontine tegmentum onto DA

neurons (Floresco et al., 2003; Futami et al., 1995). Furthermore, the ability of

DA neurons to fire in bursts is dependent on inputs from the lateral dorsal

tegmental nucleus (Lodge and Grace, 2006a); interruption of this source of aVer-
ents prevents glutamate-driven burst firing, causing the DA neurons to discharge

in a manner similar to that observed in vitro (Grace and Onn, 1989).

DA is released from DA terminals located in the targeted brain areas as a

function of spike firing patterns of DA neurons (Fig. 3). Tonic spike firing of DA

neurons induces tonic, low concentration of DA release (i.e., nanomolar; Floresco

et al., 2003; Grace, 1991). In vivo, the level of tonic DA release is regulated by

powerful GABAergic inhibitory inputs arising from the ventral pallidum that

innervate DA neurons in the VTA. Thus, when the ventral pallidum is inactivated,

the number of spontaneously firing DA neurons increases and tonic DA release in

the VS is increased (Floresco et al., 2003). It is hypothesized that such tonic DA

release can escape from the reuptake system in the synaptic cleft of the release sites,

and therefore determines the basal concentration of extracellular DA level within

these regions (Fig. 3; Grace, 1991). Tonic DA release is too low in concentration to

eVectively stimulate the postsynaptic targets of these neurons; however, it appears

to be suYcient in concentration to stimulate presynaptic DA receptors, including

those on corticostriatal projections (O’Donnell and Grace, 1994; West and Grace,

2002) and the autoreceptors on theDA terminals themselves, which provide a local

regulation of DA synthesis and release (Nowycky and Roth, 1978; Starke et al.,

1978;Wolf andRoth, 1990). In contrast, burst spike firing of DA neurons induces a

substantially higher amplitude (i.e., micromolar to millimolar; Floresco et al., 2003;

Grace, 1991) of phasic DA release within the synaptic cleft of the DA terminals,

where it can stimulate postsynaptic DA receptors. This high-amplitude phasically

released DA is then subject to immediate reuptake into DA terminals via the

dopamine transporter (DAT) in the striatum, where it is then recycled or metabo-

lized by monoamine oxidase (Fig. 3; Grace, 1991; Kuhar et al., 1990; MolinoV and
Axelrod, 1971). This contrasts with the PFC, in which DAT is low, and DA is

believed to be removed primarily by actions of metabolic enzyme catechol-O-

methyltransferease (COMT) (Fig. 3; Karoum et al., 1994; MolinoV and Axelrod,

1971; Sesack et al., 1998;White, 1996) or by reuptake into noradrenergic terminals

(Moron et al., 2002). Indeed, DAT knockout mice show a greater DA overflow in

the striatum and hyperlocomotion, but the amount of DA reuptake is not changed

in the PFC of these mice (Gogos et al., 1998). Recent studies combining human

imaging studies with genetic analysis have revealed that single nucleotide polymor-

phism (SNP) of genes encoding COMTaVects PFC function. For example, human

subjects with the Val/Val allele at position 158 in COMT exhibit significantly
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DATVTA
(Burst firing) 

Burst firing promotes massive DA 
release within the synapse

Escape from synapse 
constrained by DAT 

A    Tonic DA release in the VS

B   Phasic DA release in the VS

DAR (D1, D2)

DAR (D1, D2)

DAR (D1, D2)

VTA
(Slow irregular firing)

Promote extrasynaptic DA release and 
presynaptic receptor stimulation 

C   Phasic DA release in the PFC

COMT

VTA
(Burst firing) 

Burst firing promotes massive
DA release into the synapse
where it can escape into the

extrasynaptic space

DAR (D5)

FIG. 3. Tonic and phasic DA release in the PFC and striatum is regulated by COMT and DAT.

(A) The slow, irregular baseline spike firing of DA neurons induces steady-state tonic DA release in

the postsynaptic target regions. DA released in this manner is not strongly attenuated by the reuptake

system, and hence can diVuse into the extrasynaptic space. (B) When burst spike firing occurs in DA

neurons, massive, phasic DA release is produced in the striatum. Phasic DA release is subject to rapid

removal by the DA uptake system, DAT, before it can escape the synaptic cleft. Therefore, phasic DA

release is transient and spatially constrained to the vicinity of the synaptic cleft. (C) In contrast, in the

PFC where there are very low levels of DAT, the primary means for inactivation of released DA is via

the metabolizing enzyme COMT. As a result, both tonic and phasic DA released from terminals in

the PFC is allowed to diVuse into the extrasynaptic space. One of the targets that extrasynaptic DA

can stimulate is the D5 receptor, which is selectively located in this compartment. Adapted from

Bilder et al. (2004).
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lower working memory and PFC activity than those having the Met/Met allele.

Since Val/Val COMTmetabolizes DA at a faster rate thanMet/Met COMT, this

diVerence is believed to aVect DA dynamics within the PFC (Egan et al., 2001;

Weinberger et al., 2001). Given that COMT cannot inactivate DA actions as

eYciently as that produced by DAT in the subcortical area, it is likely that tonic

and phasic DA release play substantially diVerent roles between the PFC and the

VS, with phasic DA release underlying extrasynaptic DA concentrations that are

regulated by COMT activity (Fig. 3; Bilder et al., 2004). The increased area of

diVusion of extracellular DA in the PFC, in addition to aVecting a number of

neuronal elements, may also lead to a selective stimulation of a particular subtype

of DA receptor. Thus, a study has shown that the DA D5 receptor subtype is

located exclusively at extrasynaptic sites of PFC neurons (Paspalas and Goldman-

Rakic, 2004). This would position the D5 receptor to respond preferentially to

tonic DA that has diVused away from its release site.

Studies have found that tonic and phasic DA release can actually regulate the

balance between PFC and limbic inputs into the VS (Goto and Grace, 2005b).

It was found that inactivation of the ventral pallidum to disinhibit spontaneous DA

neuron firing and consequently increase tonic DA release induces attenuation of

PFC responses in the VS, which is also mimicked by local infusion of a D2 agonist.

In contrast, activation of the ventral pallidum to decrease tonic DA release causes a

selective increase of PFC responses in the VS, which is also mimicked by local

infusion of a D2 antagonist. Therefore, as observed in vitro (O’Donnell and Grace,

1994) and in vivo (Brady and O’Donnell, 2004; West and Grace, 2002), the DA

system exerts a bimodal regulation over the PFC aVerents to the VS, and this

modulation is controlled by tonic DA release caused by spontaneous DA neuron

spike firing (Goto and Grace, 2005b). In contrast, when the DA neurons are caused

to burst firing by activation of the pedunculopontine tegmental glutamatergic

aVerent drive to the VTA, the resultant phasic DA release was found to selectively

augment HPC aVerent drive of the VS without aVecting PFC inputs. This action

can be mimicked by local infusion of a D1 agonist. However, unlike the D2 system,

there does not appear to be a baseline D1 modulation of HPC synaptic drive on

VS neurons.

The information gleaned from the studies above shows that the tonic and

phasic DA system can exert unique eVects on aVerent integration within the VS.

However, it is likely that the tonic and phasic DA system work in concert to

modulate VS function, rather than as independent entities. Indeed, we have found

that these systems can function in an integrated manner to augment DA function.

Thus, we have found that burst firing can only be induced in DA neurons that are

exhibiting spontaneous spike firing. This is likely due to the fact that burst firing is

dependent on N-methyl-D-asparate (NMDA) receptor stimulation (Overton and

Clark, 1992, 1997), and in a hyperpolarized, nonfiring neuron, NMDAchannels are

not closed by a magnesium block (Mayer et al., 1984; Nowak et al., 1984). This
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hyperpolarized state can be relieved by decreasing the massive bombardment of

DA neurons by GABAergic inhibition (Grace and Bunney, 1979, 1985) that hold

these neurons in the inactive state. When tonic DA spike firing is activated by a

decrease in ventral pallidal inhibitory control, pedunculopontine tegmental gluta-

matergic inputs are capable of causing a much larger population of DA neurons to

enter the burst firing mode (Lodge and Grace, 2006b). With the tonic and phasic

system acting together, DA transmission in the VS would exert two eVects: a tonic
DA D2-mediated attenuation of PFC drive and a phasic D1-mediated potentiation

of HPC drive over VS neurons. Thus, increasing DA transmission will shift the

balance of inputs to the VS away fromPFC drive, favoring limbic drive. Conversely,

a decrease in DA system function, as may occur during cognitive states or as a

consequence of antipsychotic drug-induced depolarization block as described below

(Section VII; Grace et al., 1997), would shift the balance toward PFC predominance

over the limbic input.

IV. Cellular Actions of DA

There are two major classes of DA receptors that mediate the actions of DA:

the D1 family and the D2 family. The D1 receptor family has two subclasses, D1

and D5, whereas D2 receptor family is composed of three subclasses, D2, D3,

and D4 receptors (Jackson and Westlind-Danielsson, 1994; Seeman and Van Tol,

1993). These receptors are located at both pre- and postsynaptic sites. D1 and D2

receptors are coupled to Gs and Gi proteins and, as a consequence, mediate

activation and inhibition of second messenger cascades, respectively (Greengard

et al., 1999; Neve et al., 2004). This leads to phosphorylation and dephosphoryla-

tion of a number of channels and receptors, modulating cell excitability (Cepeda

et al., 1993, 1995; Gorelova and Yang, 2000; Gulledge and JaVe, 1998; Tseng and
O’Donnell, 2004; Wang and Goldman-Rakic, 2004), glutamate and GABA neu-

rotransmission (Gao et al., 2001; Seamans et al., 2001a,b), and synaptic plasticity

(Bissiere et al., 2003; Centonze et al., 2001; Otani et al., 2003; Otmakhova and

Lisman, 1996; see references such as Nicola et al., 2000 and Seamans and

Yang, 2004 for detailed summary of channels and receptors modulated by DA).

The most consistent finding with respect to DA modulation of channels and

receptors in the PFC and striatum is the D1-mediated facilitation of calcium influx

into neurons via interactions with NMDA channels (Cepeda et al., 1993; Tseng

and O’Donnell, 2004) and L-type calcium (Surmeier et al., 1995; Tseng and

O’Donnell, 2004). In contrast, although it is still controversial, the D2 receptors

have been suggested to decrease AMPA in the PFC and striatum (Cepeda et al.,

1993; Tseng and O’Donnell, 2004). DA also seems to increase or decrease

GABA release via D1 and D2 receptors, respectively, located on interneurons
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in the PFC (Gorelova et al., 2002; Seamans et al., 2001b). However, another study

shows that D2 receptor activation has the opposite action: an increase in GABA

release in the PFC (Tseng and O’Donnell, 2004). Anatomical studies have shown

that D1 receptors are found on presynaptic sites of terminals within the PFC

(Paspalas and Goldman-Rakic, 2005), and stimulation of presynaptic D1 recep-

tors have been reported to decrease glutamate release in the PFC (Gao et al.,

2001; Seamans et al., 2001a). In contrast, D1 receptors have not been found to be

present presynaptically on terminals within the striatum (Hara and Pickel, 2005).

Instead, in the striatum only the D2 DA receptor has been localized to presyn-

aptic sites (Fisher et al., 1994; Wang and Pickel, 2002). Although the role of

presynaptic DA receptors in controlling glutamate and/or GABA release has not

been fully characterized, within the striatum, stimulation of presynaptic D2

receptors has been shown to decrease glutamate release (Bamford et al., 2004;

Umemiya and Raymond, 1997) and to attenuate PFC-evoked excitatory post-

synaptic potentials (EPSPs) in the striatum (Brady and O’Donnell, 2004; Goto

and Grace, 2005b; O’Donnell and Grace, 1994; West and Grace, 2002).

It is diYcult to examine the cellular eVects of DA transmission in vivo, given

the potent regulation of the system and the multiple sites of action of DA

release. In order to examine how DA is modulating activity within the striatum,

studies were conducted in which DA antagonists were infused locally into the

striatum via reverse microdialysis to achieve local blockade of receptors while

performing in vivo electrophysiological recordings from neurons adjacent to the

probe, through which the eVects produced by attenuating endogenous DA

transmission can be observed (West and Grace, 2002). Using this methodology,

it was found that striatal neurons in vivo are potently modulated by DA D1 and

D2 receptors, with D1 receptors controlling neuronal excitability and D2 recep-

tors modulating baseline activity and cortical aVerent drive (West and Grace,

2002).

Functional studies into the significance of DA modulation of neuronal

activity points to the involvement of DA in synaptic plasticity and learning and

memory associated with it (Schultz, 2002). Synaptic plasticity has been most

commonly tested by induction of long-term potentiation (LTP) and depression

(LTD; Abraham and Tate, 1997; Bear and Malenka, 1994). Since LTP and

LTD induction is closely linked with intracellular calcium influx (Abraham

and Tate, 1997; Bear and Malenka, 1994), D1-mediated NMDA and L-type

calcium channel phosphorylation have a critical impact on them (Greengard

et al., 1999). Indeed, synaptic plasticity induction in brain regions receiving DA

innervation, including the PFC (Gurden et al., 1999; Otani et al., 1998), striatum

(Arbuthnott et al., 2000; Centonze et al., 2001; Reynolds et al., 2001), HPC

(Li et al., 2003; Otmakhova and Lisman, 1996), and amygdala (Bissiere et al.,

2003), is dependent on DA release. For example, D1 antagonist is known to

prevent LTP induced at HPC aVerents into the PFC (Gurden et al., 2000).
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Furthermore, LTD induction within PFC circuitry is shown to depend on both

D1 and D2 receptor activation (Otani et al., 1998). Similarly, D1- but not

D2-dependent LTP has been found in the HPC (Otmakhova and Lisman,

1996) and amygdala (Bissiere et al., 2003). However, LTP and LTD induction

in the striatum is somewhat controversial. DA-dependent plasticity that involves

both D1 and D2 receptors has been reported with respect to LTP and LTD

induction in the dorsal striatum (Calabresi et al., 1992; Spencer and Murphy,

2000), whereas despite the presence of dense DA projections, synaptic plasticity

in the VS has been reported to be DA independent (Pennartz et al., 1993). In

contrast, studies have described DA-dependent plasticity in the VS (Goto and

Grace, 2005a; Thomas et al., 2001). Some studies have shown that DA aVects
NMDA and AMPA receptor traYcking (Malenka, 2003; Wolf et al., 2004). D1

receptor activation stimulates cell surface expression of GluR1 subunit of NMDA

receptors in the PFC (Sun et al., 2005) and VS (Mangiavacchi and Wolf, 2004),

resulting in increased calcium influx into the neurons.

Overall, DA appears to control the balance of excitatory and inhibitory drive

of neural activity within its projection sites, and to mediate synaptic plasticity

associated with learning and memory.

V. Roles of DA on Cognitive and Affective Functions

DA is involved in the induction of synaptic plasticity in the brain regions

receiving DA neuron projections, and therefore is believed to play a pivotal role

in learning and memory processes (Schultz, 2002). An elegant study of electro-

physiological recordings from DA neurons in primates done by Schultz and

colleagues (Waelti et al., 2001) have revealed that the activation of DA neuron

spike discharge during learning trials is consistent with that predicted by learning

theory (Rescorla–Wagner rule of classical conditioning; Rescorla and Wagner,

1972), suggesting that DA signals can be used to prime selective brain areas

for learning (Schultz, 2002). DA signals are used to mediate diVerent types of
learning and memory depending on the specific regions involved (Schultz et al.,

2000, 2003). Thus, DA projections into the dorsal striatum are critical for motor

learning and habit formation such as playing musical instruments or riding a

bicycle (Graybiel, 1998). Moreover, studies have shown that the DA innervation

of limbic structures plays a diVerent role in mediating learning processes. Thus,

the DA innervation of the HPC appears to be involved in the formation of long-

term memory (Lisman and Grace, 2005), whereas DA projections into the

amygdala mediate emotional memory such as aversive conditioning (Nader

and LeDoux, 1999; Rodrigues et al., 2004; Rosenkranz and Grace, 2002). The

role of the DA innervation of the VS in learning processes is less clear. However,
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the VS is the brain region where limbic and cortical inputs converge to integrate

context- and emotion-associated goal-directed behavior (Mogenson et al., 1980).

Therefore, it is likely that mesolimbic DA projections to the VS are involved in

learning processes that could occur in acquiring these aspects of goal-directed

motor control (Everitt and Robbins, 2005; Kelley and Berridge, 2002). Given

that the DA system is also believed to provide a ‘‘learning signal’’ to the limbic

system (Schultz, 2002), we examined the ability of DA transmission to exert

short-term modulation of the PFC and HPC drive within the VS, and how this

relates to the processing of goal-directed behavior (Goto and Grace, 2005b).

Disconnection of the HPC inputs from the VS by unilateral injection of lidocaine

into the HPC while infusing D1 antagonists into the contralateral VS was found

to interfere with the eYcient acquisition of goal-directed behavior. In contrast,

when the PFC was disconnected from the VS by unilateral infusion of lidocaine

into the PFC while injecting a D2 agonist into the contralateral VS, there was no

interference in the acquisition of an initial discrimination task. Instead, when the

response strategy was altered (i.e., when the rat had to change from a visually

guided response strategy to a direction-guided response strategy), the rats

exhibited perseveration, using the previous response strategy rather than switch-

ing to the new paradigm. This suggests that D1-dependent HPC-VS information

processing mediates learning of a response strategy, whereas D2-dependent PFC-

VS information processing is crucial for flexible switching of this response

strategy in guiding goal-directed behavior (Goto and Grace, 2005b). This type

of disruption of limbic and cortical balance in regulating information processing

in the VS for goal-directed behavior is consistent with the type of behavioral

disruption proposed to occur in drug addiction (Everitt and Wolf, 2002; Kelley

and Berridge, 2002; Ridley, 1994). Thus, in drug-addicted subjects, a loss of

cortically driven behavioral flexibility in favor of HPC-driven perseveration in

drug-seeking behavior could be one of the mechanisms by which drug-addicted

individuals lose their ability to modify their behavior in favor of more behavior-

ally eVective strategies. Indeed, we also found that repeated cocaine treatment

could induce abnormal strengthening of HPC inputs, with LTP induction in the

HPC inputs and LTD attenuation of PFC inputs, resulting in an imbalance of

limbic and cortical drive of VS activity (Goto and Grace, 2005a).

In contrast, the role of the mesocortical DA innervation into the PFC for

learning and memory is not readily apparent from what we know about this

system. Thus, the functions associated with the PFC, such as short-term storage

of memory (few seconds to up to minutes; Funahashi et al., 1993; Goldman-

Rakic, 1995), flexible switching of response strategy (Milner, 1963; Owen et al.,

1993), attention (Gorenstein et al., 1989; Knight et al., 1995; Muir et al., 1996),

and future planning (Baker et al., 1996; Ingvar, 1985; Owen et al., 1990), are

considered to be independent of what has been typically associated with more

standard learning and memory paradigms, and may not involve synaptic plasticity
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such as LTP and LTD induction in this region. Nevertheless, the PFC is known to

exhibit synaptic plasticity in its network (Herry and Garcia, 2002; Laroche et al.,

1990; Otani et al., 2003), and mesocortical DA release is essential for induction of

such synaptic plasticity (Gurden et al., 1999; Otani et al., 1998), suggesting that any

cognitive functions requiring proper DA release in the PFC could involve DA-

dependent synaptic plasticity. However, the exact roles of such synaptic plasticity

in the PFC have yet to be determined.

With respect to working memory, it has been reported that DA eVects within
the PFC are bimodal in function. Thus, there is an optimal level of DA stimula-

tion required for proper PFC functioning, with either over- or understimulation

of D1 receptors leading to dysfunctional states (Granon et al., 2000; Zahrt et al.,

1997). This is an example of the classic ‘‘inverted U’’-shaped relationship known

as the Yerkes–Dodson curve (Yerkes and Dodson, 1908). In primate studies, it has

been shown that D1 receptors play a crucial role in short-term memory functions

(Goldman-Rakic, 1995). This is particularly pertinent for spatial working memo-

ry. Thus, when a monkey is required to hold the location of an object in memory

for a short period of time in order to guide a subsequent behavior, PFC neurons

associated with that special location become activated, and remain so until the

task is completed (Funahashi et al., 1993). Such sustained spike firing of PFC

neurons during the time in which information is held in memory is disrupted by a

D1 receptor antagonist (Sawaguchi and Goldman-Rakic, 1994). Whether D2

receptors also exhibit a U-shaped functional relationship in the PFC is not

known. In primate electrophysiological recording studies, evidence for an

involvement of D2 receptors in the temporal retention of information during

short time periods has not been reported (Sawaguchi and Goldman-Rakic, 1994;

Wang et al., 2004). Nonetheless, evidence suggests that short-term memory can

be aVected by administration of D2 agonists or antagonists into human subjects

(Kimberg et al., 1997; Mehta et al., 2001). Although this supports a D2 receptor

involvement in short-term memory in humans, the location of this D2 action is

not known.

VI. Development and Maturation of the DA System

There is increasing evidence that many major psychiatric disorders have

their origin in a disruption occurring during development of the nervous system.

Therefore, understanding the development and maturation of DA systems is es-

sential for a more complete comprehension of the etiology and pathophysiology of

a number of major psychiatric disorders such as schizophrenia and attention

deficit/hyperactivity disorder (ADHD) in which neurodevelopmental compro-

mises in the DA system have been implicated (Castellanos, 1997; Eells, 2003;
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Harrison, 1999; Heyman and Murray, 1992; Nieoullon, 2002; Sonuga-Barke,

2005; Weinberger, 1987).

DA neurons are born in the midbrain of rats at around embryonic day (ED)

12–16, with a peak occurring at ED13 (Lauder and Bloom, 1974). This is followed

by programmed cell death of subsets of DA neurons that is initiated around

postnatal day (PD) 2 and PD14 (Jackson-Lewis et al., 2000; Oo and Burke,

1997). Studies have shown that growth factors released in the areas targeted

by DA neuron terminals such as the striatum appear to regulate this pro-

grammed cell death (Breiter et al., 1997; Hyman et al., 1991; Poulsen et al.,

1994). This pruning of the DA cell population in the midbrain continues to occur

until about PD20 to arrive at the final adult population of midbrain DA neurons

(Jackson-Lewis et al., 2000; Oo and Burke, 1997). In contrast, the DA collater-

alization into the targeted areas continues to increase until adolescence begins.

This occurs in concert with an increase in the number of DA receptors expressed

in postsynaptic target areas. During puberty, a second wave of pruning of the DA

innervation is initiated, but DA receptor pruning occurs diVerentially depending
on the target region. Thus, there is substantial pruning of both D1 and D2

receptors in the PFC (Andersen et al., 2000) and dorsal striatum (Teicher

et al., 1995) during adolescence and young adulthood. Indeed, it has been shown

that the maturation of the DA system has functional significance with respect to

D1-mediated facilitation of NMDA currents (Tseng and O’Donnell, 2004) and

D2 receptor modulation of interneuron activity (Tseng and O’Donnell, 2004) in

the PFC. In contrast, the reorganization of DA receptor expression in the VS

during adolescence is not as prominent (Teicher et al., 1995). Nevertheless, it

appears that the mesolimbic DA system in the VS does not seem to be fully

matured after puberty, since for example, drug sensitization produced by repeated

psychostimulant administration induces significantly diVerent eVects in pre- and

midpubertal animals (Tirelli et al., 2003; Ujike et al., 1995); a process that in the

adult animal is known to involve sensitization of DA release in the VS (but see

Borgland et al., 2006 for evidence of sensitization in prepubertal animals). DA

system maturation during adolescence is of particular interest with respect to the

pathophysiology of schizophrenia, given that brain compromises at the second

trimester of pregnancy have been suggested to occur in the brains of schizophre-

nia patients, whereas the onset of psychotic symptoms are typically delayed until

late adolescence to early adulthood (Harrison, 1999; Weinberger, 1987). With

respect to disorders such as ADHD, a similar type of disruption of mesocortical

DA system function has also been proposed (Castellanos, 1997; Heyman and

Murray, 1992; Nieoullon, 2002; Sonuga-Barke, 2005). However, the time course

underlying the origin of ADHD symptoms appears to be substantially diVerent
from that of schizophrenia, since in schizophrenia the DA deficit occurs during

maturation, whereas in ADHD the symptomatology is already present at a very

early age.
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VII. DA Deficits in Schizophrenia

Since the first description of amphetamine induction of schizophrenia-like

symptoms in normals (Connell, 1958) and the observation that DA D2 antago-

nists are eVective in the treatment of this disorder (Carlsson, 1974), a dysfunction

within the DA system has been implicated in schizophrenia (Seeman, 1987).

These classical studies suggested that schizophrenia symptoms may be caused

by an excess in DA release; however, more recent studies suggest that this may be

an oversimplification. Thus, results show that there is an augmentation of DA

release in the striatum only during specific types of system activation, and this is

correlated with the positive psychotic symptoms of this disorder (Laruelle et al.,

1999). In contrast, it has been proposed that the functional deficits observed in

the PFC of schizophrenia patients could be due to a deficit in DA activity, which

may underlie the negative or deficit state of schizophrenia (Abi-Dargham et al.,

2002; Davis et al., 1991).

A potential relationship that has been advanced to account for the disturbed

DA system in schizophrenia is an opposing relationship between PFC and

striatal DA release (Fig. 4). Thus, primate (Kolachana et al., 1995; Saunders

et al., 1998), rodent (Jackson et al., 2001), and human studies (Meyer-Lindenberg

et al., 2002) have shown that the attenuated PFC activity in schizophrenia may be

correlated with an exaggerated DA release in the striatum. This can be accounted

for by an examination of the anatomical organization of PFC-VTA and HPC-

VTA loops (Figs. 1 and 2; Lisman and Grace, 2005; Sesack and Carr, 2002). PFC

projections onto GABA interneurons in the VTA can suppress spike firing in the

DA neurons that project into the striatum. Therefore, with PFC deficits, the PFC

drive of VTA DA neurons is diminished, leading to abnormally augmented DA

release in the striatum in schizophrenia. Our study has revealed that increasing

DA release in the VS facilitates limbic inputs and attenuates PFC inputs, whereas

decreasing DA release shifts the balance in favor of the PFC inputs (Goto and

Grace, 2005b), suggesting that DAmaintains the balance between limbic and PFC

drive of VS neurons. As such, a combination of abnormally attenuated PFC drive of

VS neurons with augmented DA release in the VS that is shown to occur in

schizophrenia patients (Laruelle et al., 1999; Meyer-Lindenberg et al., 2002) could

cause inappropriate limbic drive of the VS and disruption of goal-directed behavior.

A keymechanism for the inverse relationship between PFC activity and striatal DA

release may be drawn from the known reciprocal interactions between the HPC

and PFC (Fig. 4). Thus, the HPC sends direct projections into the PFC (Fuster,

1997; Jay et al., 1989), whereas the PFC sends indirect projections into the HPC

through the temporal cortex (Fuster, 1997; Groenewegen and Uylings, 2000; Kyd

and Bilkey, 2003). Since it has been suggested that the PFC exerts an inhibitory

influence over limbic structures (Fuster, 1997; Grace and Rosenkranz, 2002;
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Shimamura, 2000; Zironi et al., 2001), when there is a higher degree of PFC

activity in relation to the HPC, DA release in the VS could be suppressed, whereas

higher activity within the HPC would lead to augmented DA release in the VS.

Therefore, in schizophrenia, one would postulate that attenuated PFC function

PFC

Striatum

HPC

VTA

PFC HPC

Striatum

VTA

VTA VTA

VTA

DA (+)
D1 (+) → HPC (+)
D2 (+) → PFC (–)
Striatum (+)

PFC (–)
DA (–)

PFC HPC

Striatum

DA (+)
PFC (+)

DA (–)
D1 (–) → HPC (NC)
D2 (–) → PFC (+)
Striatum (–)

PFC

A

B

C

VTA

FIG. 4. Schematic diagrams of the mesocortical and mesolimbic DA system and its regulation by

interactions among the PFC, HPC, and striatum. (A) The reciprocal interaction between the PFC and

HPC maintains the balance of mesocortical and mesolimbic DA release. (B) When PFC activity is

stronger than HPC activity, mesocortical DA release is increased in the PFC, which would further

facilitate PFC activity. Given our observation that the PFC will attenuate HPC activity, this would

lead to an attenuation of HPC drive on the striatum which, in turn, will lead to a decrease in

mesolimbic DA release. With a fall in mesolimbic DA levels, the PFC input to the striatum will be

further facilitated due to the decreased stimulation of presynaptic D2 receptors on the PFC aVerents.
(C) In contrast, when PFC activity is abnormally attenuated, as may occur in schizophrenia, there

would be a reduction in mesocortical DA release as well as a decreased PFC-mediated inhibition of

HPC activity. As a consequence, there would be an increase in HPC drive of striatal neuron activity

and mesolimbic DA release. The increase in striatal DA D1 and D2 receptor stimulation would then

cause a further attenuation of PFC input and facilitation of HPC input to the striatum.

Administration of a DA antagonist would then serve to restore the HPC/PFC balance. (þ), (–),

and (NC) denotes increase, decrease, and no change, respectively.
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could result in augmented HPC activity, which in turn would cause exaggerated

DA release in the VS and further shift toward limbic predominance over PFC

control (Fig. 4; Goto and Grace, 2005b; Meyer-Lindenberg et al., 2002, 2005).

Since the discovery that schizophrenia symptoms respond to treatment by D2

antagonists (Carlsson, 1974), the therapeutic approach to treating schizophrenia

by antipsychotic drugs has targeted brain DA systems. Nevertheless, examination

into a biological basis for this purported hyper-DA state via testing for alterations

in D2 receptors has not produced consistent results. Postmortem tissue and

imaging studies reporting increased D2 density in schizophrenia have been con-

troversial, with many studies reporting no diVerence (Farde et al., 1987; Nordstrom

et al., 1995). In contrast, given that one of the core deficits in schizophrenia is

cognitive dysfunctions that have been associated with PFC activity (Weinberger

et al., 1994), studies have focused on alterations of D1 receptors in the PFC of

schizophrenia patients. Indeed, although the results are still incomplete, altera-

tions, that is increases (Okubo et al., 1997) or decreases (Abi-Dargham et al., 2002),

of D1 receptors in the PFC of schizophrenia patients have been reported. Given

that D1 receptor stimulation facilitates calcium influx via NMDA channels

(Greengard et al., 1999; Tseng and O’Donnell, 2004), alterations in D1 receptors

are also consistent with the hypo-NMDA function theory of schizophrenia patho-

physiology (Coyle et al., 2003; GoV and Coyle, 2001; Jentsch and Roth, 1999).

This model is based on observations that NMDA antagonists can lead to

schizophrenia-like symptoms in normal patients, and moreover can precipitate a

recurrence of symptoms in schizophrenia patients that is indistinguishable from

that of a relapse (Coyle et al., 2003; GoV and Coyle, 2001; Jentsch and Roth,

1999). Since it is known that DA stimulation of D1 receptors in the PFC exhibits an

inverted U-shaped relationship, with optimal DA release required for mediating

eVective cognitive functions (Lidow et al., 1998; Robbins, 2005), increases or

decreases in D1 receptors would shift the relationship between optimal DA release

and over- or understimulation of D1 receptors and their impact on PFC function

(Callicott et al., 2003; Goto et al., 2004; Manoach, 2003).

The exact mechanism by which D2 antagonism achieves therapeutic eYcacy

in schizophrenia is still unclear. However, a number of possibilities have been

suggested. First, D2 antagonists increase glutamate release from the PFC aVer-
ents into the striatum (Brady and O’Donnell, 2004; Goto and Grace, 2005b;

O’Donnell and Grace, 1994), facilitating corticostriatal information processing.

Alternately, D2 antagonism could aVect D2 receptors located within the PFC

(Seamans et al., 2001b; Tseng and O’Donnell, 2004; Wang and Goldman-Rakic,

2004; Wang et al., 2004), which may facilitate PFC activity. These two possibilities

predict that D2 antagonists should have immediate eVects on schizophrenia

symptoms. Although studies have suggested that antipsychotic drugs may have

an immediate eVect on schizophrenia symptoms (Ngan et al., 2002), these results

are confounded by the fact that the antipsychotic drugs were tested in patients that
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had been withdrawn from treatment. It is known from animal models that prior

antipsychotic drug treatment will sensitize the DA system to subsequent adminis-

tration, dramatically shortening the time required to achieve DA neuron inactiva-

tion (Moore et al., 1998). In contrast, most clinical trials of drug-naive patients show

a delayed onset of therapeutic actions (Hamill and Fontana, 1975; Johnstone

et al., 1978), suggesting other possible mechanisms may be involved. One mecha-

nism that has been consistent with both the pharmacology and time course of

antipsychotic drug action is the induction of depolarization block of DA neurons

by repeated antipsychotic drug treatment (Grace et al., 1997). It has been shown

that repeated administration of D2 antagonists for 3 weeks induces substantial

membrane potential depolarization of DA neurons, leading to a cessation of spike

discharge (Grace and Bunney, 1986). As a consequence, these DAneurons become

unable to evoke spike firing secondary to an overdepolarized membrane potential

state. Therefore, unlike the blockade of postsynaptic receptors produced by acute

administration of these drugs (that could be overcome by compensatory changes),

an abnormal excitatory drive of DA neurons would be incapable of increasing DA

release. Therefore, depolarization block of DA neurons could reduce the amount

of DA release in the striatum produced in an event-related manner.

VIII. Conclusions

One thing that is clear from the above review is that the DA system exerts

complex, multifaceted actions within several interrelated systems of the mamma-

lian brain. It has a role in motor function, motivation and reward, attention, and

learning and memory. Therefore, the widespread but anatomically discrete

projections of the DA system are positioned to coordinate functions that can

have a major impact on cognition and goal-directed behavior. While such diverse

functions illuminate the many-faceted disruptions that can occur within this

system to lead to a variety of psychiatric disturbances, it also highlights the

diYculty in specifically targeting therapeutic agents to single DA systems.

A better understanding of the factors that control the DA system, and how they

may diVerentially aVect specific DA circuits, may provide the type of insight

required to eVectively target therapeutic agents.
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unknown. To date, the most widely considered neurochemical hypothesis of

schizophrenia is the dopamine hypothesis, which postulates that symptoms of

schizophrenia may result from excess dopaminergic neurotransmission particularly

in striatal brain regions, along with dopaminergic deficits in prefrontal brain regions.

Alternative neurochemical models of schizophrenia, however, have been proposed
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involving glutamatergic mechanisms in general and N-methyl-D-aspartate (NMDA)

receptors inparticular.Apotential role for glutamatergicmechanisms in schizophrenia

was first proposed�15 years ago based on the observation that the psychotomimetic

agents phencyclidine (PCP) and ketamine induce psychotic symptoms and

neurocognitive disturbances similar to those of schizophrenia by blocking neuro-

transmission at NMDA-type glutamate receptors. Since that time, significant

additional evidence has accumulated supporting a role for NMDA hypofunction in

the pathophysiology of schizophrenia. Clinical challenge studies with PCP and

ketamine have confirmed the close resemblance betweenNMDA antagonist-induced

symptoms and neurocognitive deficits and those observed in schizophrenia, and

suggest thatNMDAdysfunctionmay lead to secondarydopaminergic dysregulation in

striatal and prefrontal brain regions. As compared to dopaminergic agents, NMDA

antagonists induce negative and cognitive symptoms of schizophrenia, as well as

positive symptoms. Treatment studies with NMDA modulators, such as glycine,

D-serine, and glycine transport inhibitors (GTIs), have yielded encouraging findings,

although results remain controversial. Finally, genetic linkage and in vivo neuroche-

mical studies in schizophrenia highlight potential etiological mechanisms giving rise to

glutamatergic/NMDA dysfunction in schizophrenia.

I. Introduction

Schizophrenia is a serious mental disorder that aVects up to 1% of the

population worldwide, and is one of the leading causes of chronic disability.

The first eVective treatments for schizophrenia were discovered fortuitously

in the late 1950s, and subsequently shown to mediate their eVects at dopamine

D2 receptors. Since that time, dopamine has been the primary neurotransmitter

implicated in schizophrenia, and the majority of neurochemical studies of

schizophrenia continue to focus on dopaminergic mechanisms (Carlsson, 1988).

Neurochemical models of schizophrenia based on dopaminergic theories

have had substantial heuristic value in explaining key symptoms of schizophrenia,

in particular, positive symptoms, and in guiding treatment considerations. For

example, all antipsychotics are eVective at doses that occupy �80% of brain D2

receptors (Kapur and Remington, 2001). Further, individuals with schizophrenia

do show enhanced striatal dopamine release to amphetamine challenge at least

during the acute stage of illness (Laruelle, 1998). Nevertheless, significant limita-

tions with regard to the dopamine hypothesis remain. First, no intrinsic deficits

have been observed within the dopamine system to account for the presumed

hyperdopaminergia associated with schizophrenia. Second, reconceptualizations
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of the dopamine hypothesis propose that subcortical hyperdopaminergia may

coexist with cortical hypodopaminergia (Davis et al., 1991), although mechanisms

underlying the diVerential cortical and subcortical abnormalities remain to be

determined. Finally, dopaminergic dysfunction, in general, accounts poorly for

symptom classes in schizophrenia other than positive symptoms, and for the pattern

of neurocognitive dysfunction associated with schizophrenia. Thus, alternative

conceptual models of schizophrenia are required.

An alternative to the dopamine model was first proposed in the early 1990s,

based on the observation that phencyclidine (PCP) and similarly acting psychoto-

mimetic compounds induced their unique behavioral eVects by blocking neuro-

transmission at N-methyl-D-aspartate (NMDA)-type glutamate receptors ( Javitt,

1987; Javitt and Zukin, 1991). The ability of these compounds to transiently

reproduce key symptoms of schizophrenia by blocking NMDA receptors led to

the concept that symptoms in schizophrenia may reflect underlying dysfunction

or dysregulation of NMDA receptor-mediated neurotransmission.

Over the past 15 years, convergent evidence has accumulated to support a

primary role for glutamatergic dysfunction in the pathophysiology of schizophre-

nia (Abi-Saab et al., 1998; Coyle, 1996; Olney et al., 1999; Tamminga et al., 1995).

In particular, studies have documented a close congruence between symptomatic

and neurocognitive eVects induced by NMDA antagonists such as PCP and the

related drug ketamine, and the pattern observed in schizophrenia. Further, both

genetic and neurochemical studies have begun to identify pathogenetic events

that may impact on glutamatergic neurotransmission, and provide plausible

bases for underlying NMDA dysfunction. Finally, evidence from both animal

and human studies suggest that the hyperdopaminergia associated with schizo-

phrenia may, in fact, result from underlying dysfunction of NMDA-related

neuromodulatory feedback mechanisms. Overall, these findings suggest new

etiological and psychotherapeutic conceptualizations of schizophrenia.

II. Glutamatergic Physiology

Glutamate is the primary excitatory neurotransmitter in brain, accounting

for roughly 60% of neurons and 40% of synapses. Virtually all cortical pyramidal

neurons use glutamate as their primary excitatory neurotransmitter. Glutamate is

synthesized in brain from glutamine, which is transported across the blood–brain

barrier with high aYnity and present at high concentration in extracellular

brain fluid and cerebrospinal fluid. Following release, glutamate is reabsorbed

by both neuronal and glial glutamate transporters via an energy-dependent

transport process. Much of the brain energy demand relates to glutamate

homeostasis.
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A. GLUTAMATE–DOPAMINE COMPARISONS

To date, dopaminergic models of schizophrenia have emphasized primary

dysfunction of circumscribed brain pathways, such as the mesocortical and meso-

limbic dopamine systems, as being the primary pathophysiological events in

schizophrenia, with other types of deficits deriving secondarily from such distur-

bances. Given the widespread distribution of glutamate in the brain, however,

glutamatergic models start from a diVerent conceptual framework.

In glutamatergic models, it is presumed that similar functional disturbances

are present throughout cortex and that such deficits may even involve subcortical

glutamatergic pathways. Thus, glutamatergic models diVer from dopaminergic

models in that they predict widespread, rather than circumscribed, patterns of

cortical dysfunction in schizophrenia. Nevertheless, not all glutamate receptors

appear to be involved equally. In particular, clinical features of schizophrenia are

most consistent with circumscribed dysfunction NMDA receptors, and new

treatment approaches for schizophrenia are increasingly targeting these recep-

tors. NMDA receptors, however, work in association with other glutamatergic

and nonglutamatergic receptors. Such interactions may play a critical role as well

in both etiopathology and treatment of schizophrenia.

B. GLUTAMATE RECEPTORS

Receptors for glutamate are divided into two broad families. Ionotropic

receptors are diVerentiated based on sensitivity to the synthetic glutamate deriva-

tives NMDA, AMPA, and kainate. Metabotropic receptors, which are G-protein

coupled and mediate longer-term neuromodulatory eVects of glutamate, are

divided into groups on the basis of eVector coupling and ligand sensitivity. Despite

the diVerential sensitivity of these receptors to specific synthetic ligands, the

endogenous neurotransmitter for all receptors is glutamate, and, to a lesser extent,

the closely related amino acid aspartate.

C. NMDA RECEPTORS

NMDA receptors (Fig. 1) are the most complex of the ionotropic receptors.

In addition to the recognition site for glutamate, NMDA receptors contain

an allosteric modulatory site that binds the endogenous brain amino acids

glycine and D-serine. This glycine-binding site, like the benzodiazepine site of

the GABAA receptor, regulates channel open time and desensitization rate in the

presence of agonist (glutamate), but does not, of itself, induce channel opening.

Like the benzodiazepine site, therefore, this may be an ideal target for drug

development.
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Both glycine and D-serine are present in high concentration in brain. However,

NMDA receptors appear to be protected from circulating glycine/D-serine level

by the presence of amino acid transporters that are colocalized with NMDA

receptors. Glycine type I (GLYT1) transporters may play a key role, although other

small neutral amino acid transporters (SNATs) may also contribute ( Javitt et al.,

2005a). As with the glycine site itself, these transporters have become a prominent

target for drug development.

In addition to the glycine modulatory site, the NMDA receptor complex

contains regulatory sites that are sensitive to polyamines, Zn2þ, protons, and
redox agents such as glutathione. The multiple influences that converge on

NMDA receptors speak to the critical role played by these receptors in a

multitude of brain processes and suggest additional potential sites for therapeutic

intervention.

NMDA receptors are blocked in a voltage sensitive fashion by Mg2þ, which
binds to a site within the NMDA ion channel. As a result, NMDA receptors are

uniquely voltage- as well as ligand (glutamate)-sensitive. This property permits

NMDA receptors to play a unique role in the regulation of connection strength

between neurons through a process known as long-term potentiation (LTP), and

to act in a ‘‘Hebbian’’ fashion to integrate input from multiple independent

pathways. In addition, because NMDA receptors can be turned ‘‘on’’ or ‘‘oV’’
simply by varying the membrane voltage, they serve as a key elements in circuits

related to attention, gating, and feedback regulation.

NMDA receptors are composed of multiple subunits, including at least

one NR1 subunit and one or more modulatory subunits from the NR2

FIG. 1. Schematic model of the NMDA receptor complex.
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(NR2A–NR2D) and/or NR3 (NR3A, NR3B) families. These subunits signifi-

cantly alter the functional properties of native NMDA receptors, including their

voltage sensitivity, peak conductance, and degree to which they are influenced by

the endogenous modulators glycine and D-serine. Interestingly, while the modu-

latory agents glycine and D-serine have similar, excitatory eVects on NMDA

receptors containing NR2 subunits, they have opposite eVects on receptors

containing NR3 subunits, with glycine serving to activate NR3-containing

receptors and D-serine to inhibit them (Chatterton et al., 2002).

NMDA receptors are blocked in a noncompetitive fashion by PCP, ketamine,

and other agents such as dizocilpine (MK-801), which bind to a site (PCP

receptor) located within the ion channel formed by the NMDA complex. The

ability of NMDA antagonists to induce schizophrenia-like psychotic symptoms is

among the strongest evidence to date linking glutamatergic dysfunction to the

pathophysiology of schizophrenia.

D. AMPA/KAINATE RECEPTORS

AMPA/kainate receptors are a second class of ionotropic receptors for the

neurotransmitter glutamate. AMPA receptors are composed of combinations of

GluR1–4 subunits, while kainate receptors are composed of GluR5–7 and KA1

and KA2 subunits. Both receptor types interact closely with NMDA receptors,

although at present the role of AMPA receptors is better understood, especially

with regard to LTP. LTP is a fundamental process in the brain by which the

strength of connections between neurons is modulated. It is thus the basis for

much of learning, memory, and synaptic plasticity. Modulation of connection

strength between neurons has long been known to be initiated by Ca2þ flux

through open, unblocked NMDA channels. More recently, the interplay among

glutamate receptors that permits such alterations in connections strength has also

been evaluated.

Mature AMPA receptors containing the GluR2 subunit are Ca2þ imper-

meant (Tanaka et al., 2000), and thus do not directly trigger LTP. Nevertheless,

AMPA receptors provide the primary depolarization necessary to unblock

NMDA receptors and to permit calcium entry into the cell. Ca2þ entry through

unblocked NMDA receptors, in turn, triggers AMPA insertion into the postsyn-

aptic density and synaptic strengthening. Thus, activity at AMPA and NMDA

receptors is needed for coordinated glutamatergic neurotransmission.

The inverse of the synergistic relationship is that dysfunction of either AMPA

or NMDA receptors may lead to the phenomenon of the silent synapse.

AMPA receptors are continuously recycled, leading to gradual synaptic weaken-

ing. If AMPA density falls below a critical threshold, levels of depolarization are

insuYcient to unblock NMDA channels, preventing postsynaptic depolarization
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or Ca2þ influx. The lack of Ca2þ influx precludes subsequent AMPA receptor

insertion into the postsynaptic membrane. Thus, such synapses, despite contain-

ing histologically identifiable NMDA receptors, are functionally silent and cannot

be recovered by electrical stimulation alone (Isaac et al., 1999). To the extent that

it occurs in schizophrenia, the silencing of synapses may limit the degree of

recovery to be expected even if normal glutamatergic functioning could be

restored.

E. METABOTROPIC RECEPTORS

As opposed to ionotropic receptors, which are linked directly to ion channels,

metabotropic receptors are linked to second messenger systems and aVect neuro-
nal metabolism. A particular role of glutamatergic metabotropic receptors is

regulation of presynaptic glutamate release and postsynaptic sensitivity. Metabo-

tropic receptors are divided into three groups based on functional activity. Group I

(types 1 and 4) receptors function predominantly to potentiate both presynaptic

glutamate release and postsynaptic NMDA neurotransmission. In contrast, Group II

(types 2 and 3) and Group III (types 5–7) receptors serve to limit glutamate release,

particularly during conditions of glutamate spillover from the synaptic cleft. Thus,

Group I agonists would be expected to stimulate neurotransmission mediated by

ionotropic glutamate receptors, whereas agonists for Group II/III receptors would

be expected to have opposite eVects.

III. Glutamatergic Models of Schizophrenia

The strongest evidence linking glutamate in general and NMDA receptors in

particular to the pathophysiology comes from studies of PCP and other ‘‘disso-

ciative anesthetics’’ such as ketamine. Although the overall similarity between

NMDA antagonist-induced psychosis has been appreciated since the early 1960s,

studies continue to refine the relationships between the two clinical states.

Symptoms of schizophrenia are currently divided into at least three indepen-

dent factors, labeled positive, negative, and cognitive or disorganized symptoms,

respectively on the basis of rating scales such as the Psychiatric Rating Scale

(BPRS) (Overall and Gorham, 1961) or the Positive and Negative Symptom

Scale (PANSS) (Kay et al., 1987). The positive factor consists of items such as

hallucinations, paranoia, and agitation, while the negative factor consists of items

such as apathy, motor retardation, and emotional withdrawal. The ‘‘cognitive’’ or

‘‘disorganized’’ factor, while more variable across studies, tends to include items

such as conceptual disorganization, diYculties in abstract thinking, mannerisms,
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and poor attention. Although the absolute level of symptoms varies across sub-

jects, factor scores tend to be correlated both cross-sectionally and longitudinally.

Thus, all patients with schizophrenia show at least some degree of negative and

cognitive symptoms, along with positive.

In addition to symptoms, patients with schizophrenia show a pattern of

neurocognitive dysfunction that represents a core feature of the disorder. Neuro-

cognitive deficits are present at first episode and cannot be attributed to eVects
of medication. At present, it appears that patients who subsequently develop

schizophrenia may have some level of neurocognitive dysfunction even during

childhood but that further neurocognitive decline occurs in the years immedi-

ately preceding psychotic decompensation (Lieberman et al., 2001). As with

symptoms, the underlying neurochemical basis of neurocognitive dysfunction in

schizophrenia has not been determined.

Finally, over recent years, specific neurochemical features of schizophrenia,

including subcortical hyperdopaminergia and white matter degeneration, have

been defined based on in vivo imaging and postmortem analysis. As the schizo-

phrenia phenotype has been increasingly well characterized, it has been possible

to assess with increasing precision the degree to which NMDA dysfunction may

account for specific symptoms and features of schizophrenia.

A. SYMPTOM PATTERNS FOLLOWING NMDA ANTAGONIST ADMINISTRATION

In initial studies with PCP and ketamine in the early 1960s, it was noted that

both agents produced what would now be considered positive, negative, and

cognitive symptoms of schizophrenia ( Javitt and Zukin, 1991; Luby et al., 1962).

At the time, however, no formal rating scales were used. In subsequent studies

using such rating scales, however, significant increases are observed not only in

positive symptoms but also in negative symptoms and disorganization (Krystal

et al., 1994; Lahti et al., 2001; Malhotra et al., 1996; Newcomer et al., 1999). Levels

of symptoms during acute ketamine challenge tend to show a similar pattern

across factors as they do in schizophrenia. When patients with schizophrenia are

exposed to ketamine, they also show increases in positive symptoms, as well as

negative symptoms (Lahti et al., 2001; Malhotra et al., 1996). Ketamine induced

symptoms respond poorly to conventional antipsychotics, but may be reversed

particularly by clozapine treatment (Malhotra et al., 1997a).

Despite the overall similarity between ketamine-induced symptoms and those

of schizophrenia, there are some potentially informative diVerences. In particular,

patients with schizophrenia often report hearing voices, while during ketamine

administration such symptoms are rare. In addition, visual perceptual distortions

are common during ketamine infusion but rare in established cases of schizophre-

nia. Nevertheless, the pattern of auditory and visual disturbances seen during
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ketamine administration does resemble the pattern observed early in the course in

schizophrenia (McGhie and Chapman, 1961) where both auditory and visual

perceptual disturbances are common, and auditory hallucinations have not yet

crystallized to the point of being identifiable as speech. Thus, acute ketamine

challenge may be viewed as a model of acute incipient schizophrenia, rather than

later, more chronic, phases. In patients with established schizophrenia, increases

in hallucinatory activity are observed during ketamine challenge (Lahti et al.,

2001; Malhotra et al., 1997b). Further, in primates, hallucinatory behavior is not

observed during acute PCP treatment but does emerge during chronic adminis-

tration (Linn et al., 1999). In humans, for obvious ethical reasons, eVects of chronic
ketamine or PCP treatment are not well characterized.

Although symptomatic eVects of ketamine and amphetamine have been

extensively investigated in separate investigations, relatively few studies have

tested both sets of compounds within the same volunteer subjects. A study,

however, confirms results of prior independent investigations (Krystal et al.,

2005). In that study, eVects of ketamine and amphetamine were assessed both

individually and in combination. Consistent with prior studies, ketamine induced

both positive and negative symptoms in approximately equal proportions—that

is, similar to the type of levels seen in schizophrenia—whereas amphetamine

induced only positive symptoms with no significant eVect on negative symptoms.

The specific pattern of symptoms induced by amphetamine and ketamine

diVered as well. Thus, amphetamine induced significant increases in grandiosity,

but not delusions, whereas ketamine induced significant increases in delusions but

not grandiosity. Ketamine also produced greater degrees of hallucinatory behav-

ior than did amphetamine. Additive eVects between amphetamine and ketamine

were seen only in the case of hallucinations, suggesting that the circuitry under-

lying hallucinations may have unique sensitivity to both glutamatergic and

dopaminergic dysfunctions.

Similarly, although both amphetamine and ketamine produced increases in

the cognitive factor score, the pattern of symptoms induced by the two com-

pounds diVered significantly. While amphetamine increased scoring primarily on

one element of the cognitive symptom factor, conceptual disorganization, it

had no eVect on other cognitive symptoms. In contrast, ketamine significantly

increased schizophrenia-like deficits not only in conceptual disorganization but

also in diYculties in abstract thinking, mannerisms, and poor attention. Although

some additivity between amphetamine and ketamine eVects was observed, the
degree of interaction did not reach statistical significance.

Overall, these findings continue to support the close similarity between NMDA

antagonist-induced symptoms and those observed in schizophrenia. In contrast,

patterns of symptoms induced by dopaminergic agonists, such as amphetamine,

diVer markedly from those seen in schizophrenia. Although there is a tendency to

attribute positive symptoms in schizophrenia to dopaminergic hyperactivity and
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negative symptoms to disturbances in other brain pathways, ketamine challenge

studies to date suggest that NMDA dysfunction, by itself, would be suYcient to

account for pathogenesis of all three symptom dimensions (positive, negative,

cognitive) most associated with schizophrenia.

B. COGNITIVE DEFICITS FOLLOWING NMDA ANTAGONIST TREATMENT

In addition to symptoms, schizophrenia is associated with a pattern of

neurocognitive dysfunction that is highly characteristic of the disorder (Bilder

et al., 1991; Gold et al., 1999). Based in part on the influence of dopaminergic

models of schizophrenia, a great number of cognitive studies in schizophrenia

have focused on dysfunction of specific brain regions such as prefrontal dysfunc-

tion. However, neurocognitive deficits in schizophrenia are in no ways limited to

prefrontal function. In studies that have utilized comprehensive neuropsycho-

logical batteries, similar levels of deficit have been observed across widespread

neurocognitive domains, with preferential deficits, if any, observed in learning

and declarative memory formation (Bilder et al., 2000; Dickinson et al., 2006;

Keefe et al., 2006; Saykin et al., 1991).

A challenge in the neuropsychological literature has been to define a single

brain abnormality that could account for the complex array of neuropsycho-

logical deficits seen in schizophrenia. Thus, while patients have many deficits

attributable to prefrontal dysfunction in some tests (MacDonald et al., 2005), on

other prefrontal tests the pattern of deficit is incompatible with local structural

disturbance (Shurman et al., 2005). Further, patients show deficits even in simple

visual (Butler et al., 2005) and auditory (Strous et al., 1995; Wexler et al., 1998)

sensory processing, with pattern of deficit indicating dysfunction within prima-

ry sensory regions (Rabinowicz et al., 2000). Thus, no single structural deficit

within cortex can give rise to the complex pattern of neurocognitive dysfunction

seen in schizophrenia.

Glutamatergic models provide a potential alternative framework from which

to view the pattern of neuropsychological dysfunction associated with schizo-

phrenia. Although glutamatergic systems are widespread, within each brain

region NMDA receptors participate in only a subset of processes. For example,

in hippocampus and cortex, NMDA receptor activation is required for the

initiation, but not maintenance of LTP (Miyamoto, 2006). The observation that

patients with schizophrenia (as opposed to those with the amnestic syndrome)

show deficits in memory formation (Hartvig et al., 1995; Krystal et al., 2005;

Morgan et al., 2004a; Newcomer et al., 1999; Parwani et al., 2005; Radant et al.,

1998; Rowland et al., 2005), but not retention, is thus consistent with an NMDA

pattern of dysfunction within hippocampal regions, rather than structural damage

to the hippocampus itself.
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To date, a substantial literature has accumulated comparing eVects of NMDA

antagonists to those observed in schizophrenia, using paradigms sensitive to both

sensory and cognitive aspects of information processing dysfunction in schizo-

phrenia. Deficits have been observed across widespread neuropsychological do-

mains, including working memory (Honey et al., 2003; Morgan et al., 2004a),

response inhibition (Morgan et al., 2004b), procedural memory (Morgan et al.,

2004a), and executive processing (Krystal et al., 1994; Umbricht et al., 2000).

Further, deficits are observed in sensory processing as well. For example, ketamine

administration inhibits generation of mismatch negativity (MMN), an event-

related potential (ERP) component that reflects impaired information processing

at the level of auditory cortex (Umbricht et al., 2000), and alters proprioceptive

performance (Oye et al., 1992). Similarly, administration of NMDA antagonists

in rodents produces a pattern of visual ERP deficit similar to that observed in

schizophrenia (Butler et al., 2005). Ketamine infusion also reproduces both the

severity and type of thought disorder seen in schizophrenia with both, for exam-

ple, being associated with high levels of poverty of speech, circumstantiality and

loss of goal, and relatively low levels of distractive or stilted speech or paraphasias

(Adler et al., 1999). Thus, reduction in NMDA functioning within brain could

serve as a single unifying feature to account for the otherwise complex pattern of

deficit observed in the disorder.

As opposed to ketamine, administration of dopaminergic agonists such as

amphetamine does not reproduce the pattern of deficit observed in schizophre-

nia. Further, several recent studies have assessed the ability of amphetamine to

improve neurocognitive performance in schizophrenia, on tasks such as the

Stroop test. In this test, patients showed a characteristic pattern of deficit char-

acterized by increased facilitation of response by stimulus congruence. Although

amphetamine improved overall performance in this task in both normal and

schizophrenia subjects, it nonetheless failed to reverse the specific pattern of

neurocognitive dysfunction associated with schizophrenia (Barch and Carter,

2005). On the basis of these findings, dysfunction of dopaminergic systems

appears neither necessary nor suYcient to account for the overall pattern of

neuropsychological disturbance in schizophrenia, although interactions between

dopaminergic and glutamatergic systems may occur.

C. IN VIVO FINDINGS IN SCHIZOPHRENIA BASED ON DOPAMINE

RECEPTOR OCCUPANCY

Along with neurocognitive studies, which provide insights into patterns of

cortical dysfunction in schizophrenia, positron emission (PET) and single photon

emission (SPECT) in vivo tomographic studies provide insights into patterns of

dopaminergic dysfunction in schizophrenia. In such studies, D2 agonists are tagged
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with appropriate radionuclides (e.g., [14C], [123I]) and pattern of displacement

is evaluated following administration of a dopaminergic agent. Increased

synaptic dopamine levels are associated with reduced binding potential of D2

ligands. Striatal and cortical dopaminergic circuits are known to be under regula-

tory control by glutamatergic systems (Carlsson, 2006; Javitt and Zukin, 1991;

Kulagina et al., 2001). Such studies permit in vivo assessment of dopamine–glutamate

interactions.

Both amphetamine (Breier et al., 1998; Laruelle et al., 1995) and ketamine

(Breier et al., 1998; Smith et al., 1998; Vollenweider et al., 2000) decrease striatal

binding potential of D2 ligands following acute administration in humans,

suggesting that both increase striatal dopamine levels. Thus, the presumed

subcortical hyperdopaminergia of schizophrenia could result from either under-

lying dopaminergic hyperactivity or NMDA hypoactivity. Dissociative eVects of
ketamine, however, have been observed even under administration conditions

that do not acutely aVect striatal dopamine levels (Kegeles et al., 2002), suggesting

that psychotomimetic eVects of ketamine cannot be attributed to alterations in

dopaminergic function alone.

Objective assessment of dopamine function has been operationalized in

schizophrenia using amphetamine challenge. Across cohorts, patients with acute

schizophrenia show enhanced striatal dopamine release to amphetamine chal-

lenge, consistent with presumed dysregulation of subcortical dopamine circuits

(Laruelle et al., 1999). Levels of dopamine increase, moreover, correlate with

severity of amphetamine-induced positive symptoms (Laruelle et al., 1996).

Deficits similar to those observed in schizophrenia are observed as well in normal

volunteers undergoing ketamine infusion (Kegeles et al., 2000), and in rodents

treated acutely (Miller and Abercrombie, 1996) or subchronically (Balla et al.,

2001) with NMDA receptor antagonists. In nonhuman primates, the metabotro-

pic agonist LY354740 also potentiates amphetamine-induced dopamine release

(van Berckel et al., 2006), by inhibiting presynaptic glutamate release, further

suggesting that deficits in glutamatergic functioning may underlie dopaminergic

hyperreactivity in schizophrenia.

Although initial in vivo studies in schizophrenia focused primarily on striatal

functioning, dopamine receptor occupancy studies have now been performed in

cortex as well. For example, Aalto et al. (2005) have demonstrated that acute

ketamine administration increases dopamine release in cortex, as well as in

striatum, and that the increase in release correlates with severity of ketamine-

induced psychotic symptoms. Narendran et al. (2005) have demonstrated in-

creases in D1 receptor binding in chronic ketamine abusers, suggesting also that

ketamine may modulate prefrontal dopaminergic neurotransmission. Similar

eVects are observed in primates, in which chronic treatment with NMDA

antagonists reduced tonic dopamine levels and D1 receptor upregulation, along

with deficits in working memory (Tsukada et al., 2005). In rodents, subchronic
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treatment with NMDA antagonists induces enhanced amphetamine-induced

dopamine release in prefrontal cortex (Balla et al., 2003), suggesting that schizo-

phrenia may be associated with reduced tonic dopamine levels as well with

prefrontal hyperdopaminergia.

At present, radioligand binding studies of D1 receptor binding in schizoph-

renia have yielded conflicting results, with individual studies showing decreases

(Okubo et al., 1997), no change (Karlsson et al., 2002) and increases (Abi-Dargham,

2003) in schizophrenia subjects, with discrepancy between studies most likely

reflecting diVerences in patient and receptor ligand binding characteristics.

D. POSTMORTEM FINDINGS

Postmortem studies provide a final source of information that can be used to

evaluate potential explanatory value of glutamatergic models. Schizophrenia is

associated with complex patterns of alterations in protein and gene expression that

cannot be easily explained based on dopaminergic models alone. For example,

robust and reproducible deficits in parvalbumin and GAD67 expression are

observed in postmortem hippocampus and prefrontal cortex in schizophrenia

subjects (Reynolds et al., 2004; Torrey et al., 2005), although underlying mechan-

isms are unknown. NMDA receptors regulate both parvalbumin and GAD67

expression in cultured GABAergic interneurons, with ketamine leading to

reduced expression of both agents (Kinney et al., 2006). Similarly, subchronic

treatment with PCP in rodents leads to downregulation of parvalbumin expres-

sion in vivo (Abdul-Monim et al., 2006; Reynolds et al., 2004). Other deficits, such

as altered levels of N-acetylaspartate (NAA), N-acetylaspartylglutamate (NAAG)

(Tsai et al., 1995), and carboxypeptidase (Ghose et al., 2004) may also be reproduced

by subchronic PCP administration (Flores and Coyle, 2003; Reynolds et al., 2005).

EVects of NMDA antagonists have only been tested on a minority of postmortem

markers of schizophrenia, and eVects of antipsychotic agents in postmortem studies

cannot always be excluded. Nevertheless, studies performed to date suggest that

glutamatergic models may be able to explain postmortem as well as in vivo findings

in schizophrenia.

IV. Clinical Studies with NMDA Agonists

To date, all approved agents for treatment of schizophrenia function by block-

ing neurotransmission at D2-type dopamine receptors. Given the hypothesis that

NMDA dysfunction may underlie both clinical symptoms and neurocognitive

dysfunction associated with schizophrenia, a critical issue is whether glutamate
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TABLE I

SUMMARY OF CLINICAL FINDINGS WITH THE FULL N-METHYL-D-ASPARTATE RECEPTOR GLYCINE-SITE AGONISTS GLYCINE AND D-SERINE AND THE PARTIAL AGONIST

D-CYCLOSERINE IN COMBINATION WITH TYPICAL, ATYPICAL, OR MIXED ANTIPSYCHOTICS IN SCHIZOPHRENIA

Study Agonista Antipsychoticb N

Negative Cognitive Positive

Change (%) p Change (%) p Change (%) p

Heresco-Levy

et al. (1999)

GLY Mixed 22c �39 <0.001 �24 0.01 �20 NS

Javitt et al. (2001) GLY Mixed 12c �34 <0.05 �11.9 0.1 �11 0.08

Heresco-Levy

et al. (2004)

GLY Olz/Risp 17c �23 <0.0001 �9.2 0.02 �11.4 0.006

Evins et al. (2000) GLY Clozapine 27 �4 NS – – �7 NS

Tsai et al. (1998) DSER Mixed 29 �20 <0.001 �17.7 0.004 �21.9 0.004

Heresco-Levy

et al. (2005)

DSER Olz/Risp 39c �16 <0.001 �11.7 0.001 �13 0.001

Tsai et al. (1999) DSER Clozapine 20 �2.5 NS �0.8 NS �3.6 NS

Tsai et al. (2005) D-Alanine Mixed 32 �17 <.0001 �13 <.0001 �13 .0002

GoV et al. (1999b) DCS Conventional 47 �23 <.02b – – – NS

Heresco-Levy

et al. (2002)

DCS Mixed 21c �14 <.05 – – – NS

GoV et al. (1999a) DCS Clozapine 17c þ13d <.005 – – – NS

Tsai et al. (2004a) Sarcosine Mixed 38 �14 <.0001 �17 <.0001 �13 <.0001

Lane et al. (2006) Sarcosine Clozapine 20 �2.1 NS �9.1 NS �6.6 NS
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agonists can ameliorate persistent symptoms of schizophrenia. The glutamate-

binding site of the NMDA and AMPA receptors cannot easily be targeted

because of fear of seizures, excitotoxicity, and other evidence of cortical hyper-

excitability. Further, these sites are not designed to be tonically occupied by agonist

but instead must be physically activated analogously to other ionotropic receptors

(e.g., nicotinic cholinergic, GABAA). Instead, current strategies have focused

on mechanisms for increasing eYciency of both NMDA- and AMPA-mediated

neurotransmissions without altering levels of glutamate itself. For NMDA receptors,

studies have targeted primarily the glycine modulatory site, in part because of the

availability of naturally occurring compounds that permitted early stage clinical

investigations. A ‘‘second generation’’ approach has been the use of glycine

(GLYT1) transport inhibitors, which lead to increases in brain glycine levels by

blocking its removal from the synaptic space. Finally, early stage trials have been

conducted with allosteric AMPA receptor modulators (AMPAkines), as well as

metabotropic receptor agonists and antagonists.

A. NMDA RECEPTOR GLYCINE-SITE AGONISTS

To date, the majority of clinical studies based on the glutamate hypothesis

have been conducted with positive allosteric modulators of the NMDA receptor

complex. Three separate agents have been used for these studies: glycine and

D-serine, which function as full agonists, and D-cycloserine, which functions as a

partial agonist. Glycine has been used primarily at doses of �0.4–0.8 g/kg/day

(�30–60 g/day); D-serine, at a dose of 30 mg/kg/day (�2.1 g/day) and

D-cycloserine at a dose of 50 mg/day. In addition, one study has been performed

with D-alanine, a close structural analogue of D-serine, used at a dose of 100 mg/

kg/day (�7 g/day) (Table I). With glycine and D-serine, eVectiveness of higher
doses has not been explored so that maximal benefit obtainable from glycine-site

stimulation is unknown. With D-cycloserine, doses in excess of 100 mg cause

symptom exacerbation due to emergent NMDA receptor antagonist eVects,
producing a narrow therapeutic window (van Berckel et al., 1999).

To date, 11 studies have been performed involving over 250 subjects (Table I).

All studies involved patients with persistent negative symptoms while on stable

aGLY, glycine (0.4–0.8 g/kg/day); DSER, D-serine (30 mg/kg/day); DALA, D-alanine (100 mg/

kg/day); DCS, D-cycloserine (50 mg/day); SARC, sarcosine (30 mg/kg/day).
bOLZ, olanzapine; RISP, risperidone.
cCrossover study.
dSignificant diVerence with SANS only; PANSS diVerence not significant, positive value

represents significant worsening of symptoms.

–, Not determined; NS, not significant.
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dose of antipsychotic medication. NMDA agonists were added as adjunctive

medication while patients remained on prior antipsychotic regimen. All studies

published to date have demonstrated large eVect-size (0.9–2.1 SD units) improve-

ment in negative and cognitive symptoms when these agents are added to typical

antipsychotics, or newer atypicals. Percentage improvement in negative symp-

toms range from 16% to 39% (weighted mean 22.5%) for trials in the range of

6–12 weeks. Whether greater reduction occurs during longer-term treatment, or

whether tolerance develops, is currently unknown.

The level of cognitive and positive symptom improvement, across studies, is

roughly 15%, suggesting the possibility of adjunctive benefit in combination with

antipsychotics. Given the ability of NMDA antagonists to induce positive as well

as negative symptoms during acute challenge studies, it is not clear whether the

greater eVect of NMDA agonists on negative, as compared with positive, symp-

toms is due to an intrinsic property of the approach, or rather to the fact that positive

symptoms are already partially treated by antipsychotic medication. Ultimately,

monotherapy or antipsychotic withdrawal studies will be required to address these

possibilities.

In some, but not all studies with glycine, the degree of negative symptoms

improvement has correlated significantly with baseline glycine levels, suggesting

that patients with lowest pretreatment levels respond best to NMDA receptor

agonist treatment (Heresco-Levy et al., 1999). With glycine, the critical plasma

level for therapeutic response appears to be in the range of 600–1000 mM versus

a basal level of �200 mM. Similar levels have been observed in animal studies

(Javitt et al., 2004). The mean percentage change associated with glycine treat-

ment in these studies was �30%, suggesting that if these findings could be

replicated results would be clinically meaningful.

Partial agonist eVects: As compared with full glycine-site agonists, the partial

agonist D-cycloserine has proven less eYcacious across clinical sites (Table I), and

across studies within clinical site (Heresco-Levy et al., 1998). A meta-analysis of

clinical studies performed through 2004 found evidence of significant beneficial

eVect of full glycine-site agonists across studies, but not of D-cycloserine (Tuominen

et al., 2005). Despite its overall lack of eYcacy, however, D-cycloserine was

reported to increase temporal lobe activation during a word recall task, with eVects
correlating with degree of reduction in negative symptoms (Yurgelun-Todd et al.,

2005). Thus, specific beneficial eVects may occur over short-term treatment,

although it is postulated that tolerance may occur during longer term trials.

NMDA agonists in combination with clozapine: Relative to eVects in combination

with typical or newer atypical antipsychotics, glycine-site agonists have proven

less eVective when combined with clozapine. In double blind, placebo-controlled

studies in which glycine (Evins et al., 2000) or D-serine (Tsai et al., 1999) have

been added to clozapine, no significant beneficial response has been observed,
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while D-cycloserine is reported to lead to worsening of symptoms when used in

combination with clozapine (GoV et al., 1996).

D-Cycloserine functions as a glycine-site agonist in the presence of high

glycine concentrations, and as an antagonist in the presence of high concentra-

tions (Hood et al., 1989). A parsimonious explanation for the diVerential eVects of
NMDA agonists in combination with clozapine versus other antipsychotic agents,

therefore, is that clozapine may already increase synaptic glycine levels through

as yet unknown mechanisms. Recently, clozapine has recently been shown to

block glycine and glutamine transport mediated by SNAT2-like synaptosomal

transporters, providing a potential mechanism for both the diVerential therapeu-
tic eVects of clozapine and the diVerential eVects of NMDA receptor modulators

in the presence of clozapine versus other antipsychotics (Javitt et al., 2005a).

This finding may also account for the reported ability of clozapine to increase

serum glutamate levels (Evins et al., 1997) and downregulate central glutamate

transport (Melone et al., 2003; Pietraszek et al., 2002).

CONSIST: In addition to published studies, one additional study (CONSIST)

has been presented to date only in abstract form (Buchanan et al., 2004). In that

study, glycine (60 g/day) and D-cycloserine (50 mg/day) were compared versus

placebo as adjunctive medication for persistent negative symptoms, using

inclusion/exclusion criteria designed to enrich recruitment for individuals

meeting criteria for the deficit syndrome (Carpenter et al., 1988). Study duration

was 16 weeks. Patients were on stable doses of antipsychotics other than cloza-

pine. In that study, no significant beneficial eVects were observed for either

glycine or D-cycloserine, although subgroup analyses showed significant bene-

ficial eVects of glycine in inpatients and in patients receiving conventional

medications only. No significant beneficial eVects on cognition were observed

in any group. Overall, larger trials are required, possibly with enriched inpatient

populations.

Use of glycine in the schizophrenic prodrome: The majority of studies with NMDA

agonists have focused on individuals well advanced in their illness. Recently,

however, glycine was used in an open label monotherapy study in 10 individuals

showing prodromal signs of schizophrenia. Although the number of subjects was

limited, three met early remission criteria, one other showed substantial improve-

ment, and two showed moderate improvement. Across all subjects, large eVect
size changes were observed across both positive and negative domains. EVects of
glycine were more pronounced that those that had been observed in a prior

double blind study of olanzapine (Woods et al., 2004). These data, if confirmed,

would indicate that NMDA agonists might have a primary role in the earliest

stages of schizophrenia psychosis, with potential impact across symptomatic

domains.
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B. GLYCINE TRANSPORT INHIBITORS

Both glycine and D-serine appear to be eVective when used in treatment

resistant schizophrenia. However, both must be given at gram-level doses in

order to significantly elevate CNS levels. An alternative approach to increasing

CNS levels is use of glycine transport inhibitors (GTIs), which raise synaptic

glycine levels by preventing its removal from the synaptic cleft. Use of GTIs to

augment NMDA functioning is analogous to use of selective serotonin reuptake

inhibitors (SSRIs) to raise synaptic serotonin levels in depression.

Initial studies were performed using the relatively nonselective glycine trans-

port antagonist, glycyldodecylamide (GDA). This drug was shown to inhibit

glycine transport in cortical (Javitt and Frusciante, 1997) or hippocampal (Harsing

et al., 2001) synaptosomes, and inhibit amphetamine-induced dopamine release

(Javitt et al., 2000) and PCP-induced hyperactivity in rodents (Javitt et al., 1997,

1999; Toth et al., 1986). Studies have been performed with selective, high-aYnity

GTIs such as N[3-(40-fluorophenyl)-3-(40-phenylphenoxy)propyl]sarcosine (NFPS;

Aubrey and Vandenberg, 2001), Org 24598 (Brown et al., 2001), CP-802,079

(Martina et al., 2004), or SSR504734 (Depoortere et al., 2005).

As with GDA, high-aYnity GTIs have been found to reverse PCP-induced

hyperactivity (Harsing et al., 2003) and dopaminergic hyperreactivity (Javitt et al.,

2004) in rodents, and to potentiate NMDA responses in hippocampal slices in vitro

(Bergeron et al., 1998; Depoortere et al., 2005; Kinney et al., 2003b; Martina et al.,

2004) and prefrontal cortical neurons in vivo (Chen et al., 2003). Glycine transport

inhibitors also reverse PPI abnormalities in DBA/2J mice (Depoortere et al.,

2005; Kinney et al., 2003b) and rats with neonatal hippocampal lesions (Le Pen

et al., 2003), supporting a potential role of GTIs in treatment of schizophrenia.

In striatal dopamine assays, GLYT1 inhibitors reduce amphetamine-induced

dopamine release in vivo (Javitt et al., 2004) and NMDA-stimulated release

in vitro (Bennett and Gronier, 2005; Javitt et al., 2005b), suggesting a likely eVect
on positive, as well as negative, symptoms of schizophrenia.

At saturating doses, eVective GLYT1 inhibitors produce approximately two-

to threefold increases in extracellular glycine concentrations (Depoortere et al.,

2005; Martina et al., 2004). Significantly, however, positive eVects on NMDA

receptor-mediated neurotransmission occur at concentrations two to three orders

of magnitude lower than those needed to significantly increase extracellular

glycine levels. Further, an inverted U-shape curve has been observed in several

studies where beneficial eVects of GLYT1 antagonists on NMDA function may

be diminished or lost at the highest doses used. These findings are consistent with

a model in which GLYT1 inhibitors primarily aVect glycine concentrations

within the synaptic cleft (Fig. 2), which represents a separate brain compartment

from the overall extracellular space or cerebrospinal fluid. Increases in extracel-

lular glycine levels would occur only as a consequence of diVusion of glycine from
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the synaptic to the general extracellular space, a process that would occur only at

very high glycine concentrations. At extremely high concentrations, glycine may

induce internalization of NMDA receptors, leading to loss of facilitatory glycine

eVects on NMDA transmission (Martina et al., 2004). In rodents, eVects of

GLYT1 inhibitors have been found to be similar to those of clozapine (Lipina

et al., 2005), suggesting potential overlap of cognition enhancing mechanisms.

Further support for use of GLYT1 antagonists comes from studies of GLYT1

knockdown mice. GLYT1�/� mice cannot be developed due to neonatal lethali-

ty (loss of breathing) (Tsai et al., 2004b). Nevertheless, alternative strategies have

been employed. For example, GLYT1þ/� heterozygote mice show a significant

decrease in GLYT1 expression throughout brain and an enhancement of hippo-

campal NMDA activity consistent with GLYT1 inhibitor studies (Gabernet et al.,

2005; Martina et al., 2005; Tsai et al., 2004b). Similarly, selective forebrain

knockouts show reductions in frontal glycine transport and potentiation of hip-

pocampal NMDA responses as well as procognitive ability on several learning/

memory paradigms (Yee et al., 2006). As with animals treated with GLYT1

inhibitors, GLYT1þ/� heterozygote mice show some evidence of NMDA inter-

nalization, particularly behavioral hypersensitivity to the NMDA antagonist

MK-801 (Tsai et al., 2004b). Nevertheless, on balance, the phenotype supports

a net potentiation of NMDA neurotransmission.

Sarcosine (N-methylglycine) is a naturally occurring GLYT1 antagonist that

has been used for preliminary proof-of-principle studies. To date, clinical studies

with sarcosine have been conducted only in Taiwan due to its regulatory status in

FIG. 2. Schematic model of synaptic glycine regulation by glycine transport inhibitors.
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the United States. In one study (Tsai et al., 2004a) in which it was combined with

mixed typical and atypical antipsychotics, sarcosine, at a dose of 30 mg/kg/day

(2.1 g/day) produced clinical eVects extremely similar to those of glycine and

D-serine (Table I). In contrast, when combined with clozapine (Lane et al., 2006),

sarcosine had no significant eVect on symptoms, also consistent with prior

glycine/D-serine studies. Interestingly, in one study where sarcosine and D-serine

were added to risperidone in acutely relapsing subjects.

C. OTHER IONOTROPIC TARGETS

Because AMPA receptors function in concert with NMDA receptors, they

have been proposed as alternative therapeutic targets in schizophrenia. AMPA-

kines function as positive allosteric modulators of AMPA receptor-mediated

neurotransmission, and facilitate learning and memory in both human (Ingvar

et al., 1997) and animal (Hampson et al., 1998a,b) models. Further, these drugs act

synergistically with antipsychotics to reverse amphetamine-induced hyperactivity

(Johnson et al., 1999).

In a pilot study, the AMPAkine CX-516 induced significant improvements in

memory and attention when added to clozazpine, despite lack of symptomatic

improvement (GoV et al., 2001). However, these results were not confirmed in a

larger confirmation study (GoV et al., 2005), nor were beneficial eVects observed
in a small monotherapy trial (Marenco et al., 2002). Although downregulation of

AMPA receptors is less with AMPAkines than with direct agonists, there is some

concern that downregulation may nonetheless occur and may limit long-term

treatment strategies (Jourdi et al., 2005).

Lamotrigine, an antiepileptic that reduces presynaptic glutamate release, has

also been proposed as a potential adjunctive medication in schizophrenia, based

on the theory that detrimental eVects of NMDA antagonists on cognitive func-

tioning may be due to glutamatergic rebound (Anand et al., 2000; Dursun et al.,

1999). In a clinical challenge study, lamotrigine prevented acute psychotomimetic

eVects of ketamine, with greater eVects on positive than negative symptoms

(Anand et al., 2000) supporting potential therapeutic eYcacy. Improvements in

positive and general symptoms were reported as well in small-scale studies of

lamotrigine in clozapine-treated patients with persistent clinical symptoms

(Dursun and Deakin, 2001; Tiihonen et al., 2003). However, eVects failed to

reach statistical significance in a subsequent double blind study (Kremer et al.,

2004). Further, an industry-sponsored multicenter controlled study also did not

show significant benefit (http://ctr.gsk.co.uk/Summary/lamotrigine/studylist.

asp). Thus, as of yet limited clinical evidence is available to support the eYcacy

of either AMPA agonists or general glutamate antagonists.
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D. METABOTROPIC RECEPTORS

Metabotropic modulators are currently in an early stage of development for

treatment of schizophrenia. Studies attempting to validate metabotropic recep-

tors as therapeutic targets in schizophrenia have been based on two alternative

conceptualizations of the disorder. Group I receptors potentiate presynaptic

glutamate release and NMDA receptor-mediated neurotransmission. Therapeu-

tic eVectiveness of Group I agonists is therefore predicted based on models which

postulate low NMDA receptor activity and/or glutamate levels as being patho-

physiological in schizophrenia. In contrast, Group II/III agonists inhibit glutamate

release. Use of these agents follows models, which postulate that glutamatergic

hyperactivity may be pathophysiological.

E. GROUP I RECEPTORS

Group I includes both mGLUR1 and mGLUR5 receptors, both of which

stimulate NMDA receptors via diVerential second messenger cascades (Benquet

et al., 2002; Heidinger et al., 2002). Preclinical studies have evaluated the ability of

Group I antagonists to induce schizophrenia-like behavioral eVects, and Group I

agonists to reverse eVects of amphetamine, PCP and other psychotomimetics.

The most widely used mGluR5 antagonist, 2-methyl-6-(phenylethynyl)pyridine

(MPEP), does not aVect locomotor activity or PPI by itself but potentiates PCP-

induced increases in locomotor activity and disruption of PPI (Henry et al., 2002;

Kinney et al., 2003a). Similar eVects have been observed with the more recently

develop compound 3-[(2-methyl-1,3-thiazol-4-yl)ethynyl]-pyridine (MTEP) (Cosford

et al., 2003; Pilc et al., 2002). Finally, mGluR1 (Brody et al., 2003a) and mGluR5

(Kinney et al., 2003a) knockout mice show disruptions of PPI, that respond poorly

to known treatments for schizophrenia (Brody et al., 2003b), supporting a poten-

tial role of Group I receptors as therapeutic targets in schizophrenia. Group I

antagonists also produce anxiolytic-like eVects in several animal models of anxi-

ety, suggesting that they may be independent targets for the treatment of anxiety

disorders (Chojnacka-Wojcik et al., 2001).

Studies with Group I agonists have also been supportive of potential thera-

peutic eVectiveness, but are more limited. For example, the mGluR5 agonist

2-chloro-5-hydroxyphenylglycine (CHPG) has been found to reverse PPI-disruptive

eVects of amphetamine in rodents (Kinney et al., 2003a). Similarly, both

nonselective and Group I selective agonists inhibit PCP-induced dopamine release

in rodent prefrontal cortex (Maeda et al., 2003). An issue in the use of direct

agonists is rapid receptor desensitization, preventing chronic use. An alternative

approach is the use of positive allosteric modulators, which, do not bind directly to
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the agonist-binding site. Positive modulators, in general, have proven to be lipo-

philic and centrally acting, making them attractive as potential pharmacological

agents (Pin and Acher, 2002).

Despite some encouraging results with Group I agonists in animal models,

clinical data remain lacking. Further, Group I receptors have a markedly diVerent
cellular distribution in primates than rodents (Muly et al., 2003; Paquet and

Smith, 2003). Thus, primate studies and eventual clinical trials will be needed

to validate this target for treatment of neuropsychiatric disorders.

F. GROUP II METABOTROPIC AGONISTS

Groups II and III metabotropic receptors are negatively linked to glutamate

release, and may limit endogenous release under conditions of glutamate excess.

Use of Group II/III agonists in schizophrenia is therefore based on the hypothesis

that increased glutamate levels may be pathophysiological. Several high-aYnity

agonists have been developed over recent years, including (–)-2-oxa-4-amino-

bicyclo[3.1.0.]hexane-4,6-dicarboxylate (LY379268) and the related compound

LY354740, permitting characterization of eVects of Group II agonists in both

preclinical and clinical studies (Schoepp and Marek, 2002).

An initial study with LY379268 demonstrated its ability to block PCP-

induced increases in prefrontal glutamate, along with PCP-induced impairments

in working memory, suggesting a role of glutamatergic hyperactivity in at least

some forms of prefrontal dysfunction (Lorrain et al., 2003; Moghaddam and

Adams, 1998). Similarly, LY3279268 has been shown by a variety of groups to

inhibit PCP-induced hyperactivity during both acute (Clark et al., 2002; Makino

et al., 2003) and repeated (Cartmell et al., 2000) administration, and reverse PCP-

induced behaviors in monoamine depleted mice (Swanson and Schoepp, 2002).

Finally, LY354740 has been found to reverse eVects of NMDA antagonists in

both rodents and humans (Krystal et al., 2004; Moghaddam and Adams, 1998).

Despite these intriguing results, however, clinical data with metabotropic agonists

or antagonists are yet to be reported.

V. Potential Causes of Glutamatergic Dysfunction in Schizophrenia

The observation that NMDA antagonists induce both symptoms and neuro-

cognitive deficits closely resembling those of schizophrenia (at least the early

stages), suggests strongly that dysfunction or dysregulation of NMDA receptor-

mediated neurotransmission may contribute heavily to the pathophysiology of

schizophrenia. As of yet, however, the basis for NMDA dysfunction has yet to be

90 DANIEL C. JAVITT



determined. Given dopaminergic theories of the disorder, one issue concerns

whether glutamatergic deficits in schizophrenia may be secondary to primary

disturbances in dopaminergic mechanisms. Additionally, schizophrenia is gener-

ally conceived as having both genetic and environmental components, with each

set of factors contributing approximately half to overall risk. Over recent years,

candidate genetic and environment mechanisms have been proposed. Several of

these mechanisms significantly impact glutamatergic neurotransmission, and

may account for the apparent NMDA dysregulation observed in schizophrenia.

A. DOPAMINE–GLUTAMATE INTERACTIONS

At present, dopamine D2 antagonists are the mainstay treatments for schizo-

phrenia. Their eYcacy depends on the presumed dysregulation of dopaminergic

systems in schizophrenia, although objective evidence of such dysregulation

is observed primarily during acute phases of the illness (Laruelle et al., 1999).

As such, the issue arises as to how dopaminergic treatments aVect NMDA receptor-

mediated phenomena, and whether primary disturbances in dopaminergic

neurotransmissionmay contribute to secondary dysregulation of NMDAactivation.

The strongest evidence for primary dopaminergic dysfunction in schizo-

phrenia, at present, comes from studies of polymorphisms of the catechol-O-

methyltransferase (COMT) gene. A common SNP in the COMT gene causes a

Val to Met transition at AA158/AA108 (Val158Met), resulting in reduced

COMT activity in Met allele carriers, and thus increased dopamine levels in

prefrontal cortex. In initial studies, increased presence of the Val (high activity)

allele was associated with increased risk for schizophrenia as well as impaired

prefrontal function (Weinberger et al., 2001), suggesting that low prefrontal

dopamine levels may mediate both sets of eVect.
However, considerable controversy has arisen concerning the linkage to

schizophrenia (Meyer-Lindenberg et al., 2006), with several studies failing to find

an association with schizophrenia independent of eVects on cognition (Ehlis et al.,

2006). It has also been suggested that COMT polymorphisms are not associated

with schizophrenia itself, but with manic (Derosse et al., 2006), as well as aggres-

sion (Lachman et al., 1998) symptoms within schizophrenia, which may lead to

overrepresentation in specific clinical populations. To the extent that COMT

polymorphisms are associated with schizophrenia, they suggest that low, rather

than high, dopamine levels in PFC may be pathogenic. Whether the association

with schizophrenia is ultimately supported, however, remains to be determined.

Other evidence for potential etiological involvement of dopamine in schizo-

phrenia derives from convergences between brain glutamatergic and dopaminer-

gic systems. One primary site of convergence of glutamatergic and dopaminergic

systems is on dendritic shafts and spines of striatal GABAergic medium spiny
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interneurons (for review see Kotter, 1994; Smith and Bolam, 1990; Starr, 1995).

In striatum, NMDA and D2 receptors produce opposite eVects, with NMDA

receptors producing net stimulation of striatal interneurons, and D2 receptors

producing net inhibition (Cepeda and Levine, 1998; Cepeda et al., 2001; Leveque

et al., 2000; Nicola et al., 2000; Onn et al., 2000; Peris et al., 1988; West and Grace,

2002). Thus, in striatum, NMDA antagonists and dopamine agonists produce

similar inhibition of GABAergic outflow, the first by decreasing excitation and

the second by increasing inhibition.

Dopamine is not needed to mediate the behavioral eVects of NMDA antago-

nists in rodents (ChartoV et al., 2005). Nevertheless, dopamine may enhance

these eVects, and D2 antagonists may normalize GABAergic tone in striatum

regardless of whether the primary deficit consists of dopaminergic hyperactiv-

ity or glutamatergic hypoactivity. Both glycine and GTIs have been shown to

increase NMDA-stimulated GABA release in isolated rodent striatum, while

decreasing NMDA-stimulated dopamine release (Javitt et al., 2005b), consistent

with a facilitatory eVect on NMDA activation of GABAergic striatal interneurons.

GABAergic eVects, in turn, are mediated most likely through GABAB receptors

on presynaptic dopaminergic terminals (Javitt et al., 2005b).

In contrast to D2 receptors, which mediate opposite eVects to those of

NMDA, D1 receptors show complex but primarily facilitatory interactions

(Cepeda and Levine, 2006; Missale et al., 2006). First, D1 receptors potentiate

NMDA receptor-mediated responses via stimulation of cyclic AMP (cAMP)-

protein kinase A pathway leading to DARPP-32 phosphorylation and subsequent

phosphorylation of the NMDA receptor. Second, D1 reception stimulation

induces translocation of NMDA supporting a potential therapeutic role of D1

agonists. Second, D1 receptor activation results in rapid translocation of NMDA

receptors to postsynaptic membranes, which, in turn, recruits D1 receptors to the

membrane and enhances D1 receptor-mediated cAMP, leading to a positive

feedback loop. Finally, direct protein–protein coupling between D1 and NMDA

receptors may occupy, primarily involving NR1 and NR2A, but not NR2B,

subunits. The interaction between D1 and NR2A receptors may attenuate NMDA

response. Thus, depending on which eVects predominate, either D1 agonists or

antagonists might produce psychotherapeutic eVects in schizophrenia.

Convergence between D1 and NMDA receptors occurs as well in cortex, where

D1 receptors predominate over D2. In rodents and primates, chronic exposure to

the NMDA receptors antagonists PCP and MK-801 results in decreased DA levels

in the PFC (Jentsch and Roth, 1999; Jentsch et al., 1997, 1998; Tsukada et al., 2005).

Further, in monkeys (Jentsch and Roth, 1999; Jentsch et al., 1997, 1998; Tsukada

et al., 2005), chronic exposure to the NMDA antagonist MK-801 has been found to

gradually lower DA levels in the PFC, and gradually upregulate binding of the

D1 ligand [11C]NNC 112. This finding was highly reminiscent of the increased
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[11C]NNC 112 binding observed in patients with schizophrenia in the DLPFC

(Abi-Dargham et al., 2002).

Furthermore, in the Tsukada et al. (2005) monkey study, upregulated pre-

frontal [11C]NNC 112 BP was associated with impaired WM performance, a

relationship observed in patients with schizophrenia as well (Abi-Dargham et al.,

2002). These data supported the hypothesis that, in schizophrenia, increased

[11C]NNC 112 BP is a compensatory response to a sustained deficit in prefron-

tal DA function stemming from a sustained deficit in NMDA transmission.

Of note, however, alterations in D1 binding in both monkeys (Jentsch and Roth,

1999; Jentsch et al., 1997, 1998; Tsukada et al., 2005) and humans (Abi-Dargham

et al., 2002) are restricted to prefrontal cortex, suggesting that such interactions

cannot easily account for cognitive deficits in schizophrenia that localize else-

where in brain. In cortex, D2 receptor stimulation inhibits NMDA responses

similarly to that observed in striatum (Tseng and O’Donnell, 2004). Although D2

receptor density in cortex is generally low, this interaction would be consistent

with procognitive eVects of D2 antagonists under hypofunctional NMDA

conditions.

A final site of convergence is through glutamatergic projections from prefron-

tal cortex to midbrain dopaminergic nuclei. These projections modulate activity

of midbrain DA neurons via an activating pathway, which has been termed

the ‘‘accelerator’’ and an inhibitory pathway that has been called the ‘‘brake.’’

This dual excitatory–inhibitory interaction potentially permits the prefrontal

cortex to fine-tune dopaminergic activity and produce regionally dichotomatous

eVects. AMPA and NMDA receptors also serve diVerent roles in this system, with

AMPA receptors subserving tonic inhibitory regulation of mesoaccumbens neu-

rons and a tonic excitatory regulation of mesoprefrontal DA neurons, and NMDA

receptors mediated primarily phasic responses to behaviorally relevant stimuli

(Takahata and Moghaddam, 2000). Loss of this descending glutamatergic input

thus could produce subcortical dopaminergic hyperactivity and prefrontal

hypoactivity, similar to what has been postulated to occur in schizophrenia.

Overall, therefore, dopamine–glutamate interactions remain an area of active

research. To date, other than COMT linkages, little evidence implicates intrinsic

dopaminergic deficits in the pathophysiology of schizophrenia, although both D1

and D2 receptors are part of interactive cascades that may potently modulate

glutamatergic function. D1 agonists, in particular, have been suggested as poten-

tial psychotherapeutic agents based on their ability to potentiate NMDA re-

sponses (Goldman-Rakic et al., 2004). However, clinical data supporting this

hypothesis to date remain lacking. Further, based on patterns of cognitive change

in COMT genotypes and patterns of D1 alteration in schizophrenia, D1 agonist

eVects may be limited to prefrontal-type deficits, and may fail to aVect more

distributed aspects of neurocognitive dysfunction in schizophrenia.
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B. LINKAGE–ASSOCIATION STUDIES IN SCHIZOPHRENIA

Adoption studies of schizophrenia suggest that �50% of the risk for schizo-

phrenia is genetic, with the other 50% being attributable to environmental

factors. Candidate genes for schizophrenia have only recently been identified,

however, and considerable controversy continues to surround many of the targets.

Nevertheless, a consistent and somewhat surprising finding (to the uninitiated) from

genetic studies in schizophrenia is that several of the identified genes interact

closely with glutamatergic mechanisms in general, and NMDA receptors in partic-

ular. As such, these studies provide additional support for glutamatergic theories of

the disorder.

One of the best established candidate genes for schizophrenia is neuregulin, a

brain transmitter that mediates its eVects primarily through ErbB3 and ErbB4

receptors. A positive linkage to the 8p locus encoding the neuregulin 1 (NRG1)

gene was first reported in 2002 (Stefansson et al., 2002). A meta-analysis of

13 studies published through November, 2005 confirmed the association, suggest-

ing an odd ratio of 1.22 and a p value of<10–9. Linkages to polymorphisms in the

gene encoding the ErbB4 receptor, particularly in Ashkenazi Jews, have also been

reported (Silberberg et al., 2006). In initial studies, it was suggested that NRG1

might mediate its risk-enhancing eVects based on interaction with NMDA

receptors, based on the observation that NRG1 hypomorphs had fewer functional

NMDA receptors than wild-type mice (Stefansson et al., 2002). In a recent func-

tional postmortem study, NRG1 stimulation was found to suppress NMDA recep-

tor activation in prefrontal cortex tissue from schizophrenia patients to a greater

extent than it did in tissue from matched comparison subjects (Hahn et al., 2006).

Thus, increased expression of NRG1 may increase risk for schizophrenia primarily

by downregulating cortical NMDA receptor-mediated neurotransmission.

Two other genes with strong relationship to schizophrenia, D-amino acid

oxidase (DAAO) and G72 (aka DAOA), have also been linked to schizophrenia

in at least some studies. DAAO is the primary enzyme responsible for degra-

dation of D-serine in brain. G72 is a modulatory subunit for DAAO that appears

to have arisen during late primate evolution. An initial linkage of both genes to

schizophrenia was first reported in 2002 in a Russian cohort (Chumakov et al.,

2002), with the most active combination of DAAO and G72 (i.e., the forms that

would produce lowest D-serine levels) producing the greatest risk for developing

schizophrenia. These genetic findings resonate with independent neurochemical

findings of decreased CSF D-serine levels in schizophrenia (Hashimoto et al.,

2005). The DAAO and G72 findings were subsequently confirmed in an inde-

pendent German sample (Schumacher et al., 2004), and the G72 finding in an

Ashkenazi cohort (Korostishevsky et al., 2004). In contrast, no association with

either gene was found in a recently studied Taiwanese cohort (Liu et al., 2006).

A study by Goldberg et al. (2006) also did not find significant associations of
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DAAO or G72 and schizophrenia, although G72 was strongly associated with

cognitive dysfunction and reduced hippocampal activation during an episodic

working memory task. Thus, whether polymorphisms of DAAO and G72 explain

increased risk for schizophrenia, they may be associated with accompanying

neurocognitive dysfunction.

To date, there is also limited evidence implicating NMDA receptors directly

in the genetics of schizophrenia. One positive linkage study was reported in an

African Bantu population but has not been replicated (Riley et al., 1997). Studies

have also reported some linkages between NR2 subunits and either schizophrenia

itself (Di Maria et al., 2004) or with specific clinical features of the disorder (Chiu

et al., 2003; Itokawa et al., 2003). Other potential risk genes for schizophrenia such

as dysbindin (DTNBP1), disrupted in schizophrenia-1 (DISC-1), RGS4, and

metabotropic glutamate receptor 3 (GRM-3) may also converge on glutamatergic

systems (Harrison andWeinberger, 2005; Moghaddam, 2003; Weinberger, 2005),

although further clarification is needed concerning functional consequences of

risk haplotypes for brain function.

C. ENVIRONMENTAL AND NEUROCHEMICAL FACTORS

Finally, environmental factors that contribute to development of schizophre-

nia may also converge on NMDA receptors. For example, it has been hypothe-

sized that perinatal hypoxia, an important risk factor for schizophrenia, leads to

neurotoxic degeneration of NMDA-bearing cells, an eVect that may only pro-

duce behavioral symptoms later in development (Olney et al., 1999). Similarly,

schizophrenia has been associated with decreased plasma levels of the NMDA

agonists glycine (Sumiyoshi et al., 2004) and D-serine (Hashimoto et al., 2003), and

increased levels of homocysteine (Levine et al., 2002; Susser et al., 1998), an agent

that may act as a functional NMDA antagonist. Levels of kynurenic acid, an

endogenous NMDA and nicotine receptor antagonist, may also be high in schizo-

phrenia (Erhardt et al., 2001; Schwarcz et al., 2001) and lead to inhibition of

glutamatergic/NMDA function.

A final compound of potential etiological interest in schizophrenia is glutathi-

one. Glutathione regulates NMDA receptors at the redox site. Low glutathione

levels have been reported in CSF and prefrontal cortex in schizophrenia in vivo

(Do et al., 2000). In hippocampal slices, reduced glutathione levels are associated

with reduced presynaptic glutamate release along with postsynaptic NMDA

activity, consistent with the phenotype observed in schizophrenia (Steullet et al.,

2006). Although determinants of various neurochemical levels in brain are

unknown at present, present findings suggest that alterations in metabolism or

environmental exposure may explain significant variance in risk for developing

schizophrenia, along with genetic factors.
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VI. Future Research and Treatment Implications

Over the last 40 years, the dopamine model has been the leading neurochem-

ical hypothesis of schizophrenia. This model has proven heuristically valuable,

with all current medications for schizophrenia functioning primarily to block

dopamine D2 receptors. Yet it remains unlikely that dopaminergic dysfunction,

on its own, can fully account for the wide range of symptoms and neurocognitive

deficits seen in schizophrenia. Glutamatergic models provide an alternate ap-

proach for conceptualizing the brain abnormalities associated with schizophrenia.

As opposed to dopaminergic agonists, NMDA antagonists produce negative and

cognitive symptoms of schizophrenia, along with positive symptoms, and induce

neuropsychological deficits that are extremely similar to those observed in schizo-

phrenia. At present, there are no approved medications for treatment of either

negative symptoms or neurocognitive dysfunction. New treatment approaches

aimed at potentiating glutamatergic neurotransmission particularly at NMDA

receptors, however, oVer some new hope for future clinical development.
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Schizophrenia is a devastating illness that is manifest through a variety of

clinical signs and symptoms. Among these, impairments in certain critical cognitive

functions, such as working memory, appear to represent the core features of the

disorder. In this chapter, we review the evidence indicating that disturbances in

neurotransmission by a subset of GABA neurons in the dorsolateral prefrontal

cortex are commonly present in schizophrenia. Despite both pre- and postsynaptic

compensatory responses, the resulting pathophysiological process, alterations in

the perisomatic inhibitory regulation of pyramidal neurons, underlies a reduced

capacity for the synchronization of neuronal activity at gamma frequencies that is

required for working memory function. We also discuss several pathogenetic

mechanisms that could rise to the alterations in GABA neurotransmission and

consider the implication of these findings for therapeutic interventions to improve

cognitive function in individuals with schizophrenia.

I. Working Memory Impairments: A Core Feature of Schizophrenia

Of the multiple clinical features of schizophrenia, disturbances in certain

cognitive processes, such as impairments in attention, some types of memory,

and executive function, appear to represent core features of the illness (Elvevåg
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and Goldberg, 2000). Cognitive abnormalities have been observed during the

premorbid and prodromal phases of the illness (Davidson et al., 1999), at the

initial onset of psychosis (Saykin et al., 1994), and throughout the later stages

of the illness (Heaton et al., 1994). Perhaps most important, the degree of

cognitive impairment is the best predictor of long-term outcome in individuals

with schizophrenia (Green, 1996).

At least some of the critical cognitive deficits in schizophrenia reflect altera-

tions in working memory (the ability to transiently maintain and manipulate a

limited amount of information in order to guide thought or behavior) that is

mediated by the circuitry of the dorsolateral prefrontal cortex (DLPFC) (Miller

and Cohen, 2001). Many individuals with schizophrenia perform poorly on

working memory tasks and exhibit altered activation of the DLPFC when

attempting to perform such tasks (Callicott et al., 2003; Perlstein et al., 2001;

Weinberger et al., 1986). In contrast, these abnormalities have not been found in

individuals with other psychotic disorders (MacDonald et al., 2005) or major

depression (Barch et al., 2003). The altered activation of the DLPFC during

working memory tasks predicts the severity of cognitive disorganization symp-

toms in subjects with schizophrenia (Perlstein et al., 2001), and reduced working

memory capacity has been suggested to be rate limiting in the performance of

other cognitive tasks in schizophrenia (Silver et al., 2003).

II. Working Memory Impairments and Altered GABA Neurotransmission in the DLPFC

Working memory depends on the coordinated and sustained firing of subsets

of DLPFC pyramidal neurons between the temporary presentation of a stimulus

cue and the later initiation of a behavioral response (Goldman-Rakic, 1995).

Although other neurotransmitter systems are also involved, inhibitory signaling

via �-aminobutyric acid (GABA) appears to be critical for this pattern of activity

in DLPFC pyramidal neurons during working memory. Fast-spiking GABA

neurons in monkey DLPFC are active during the delay period of working

memory tasks (Wilson et al., 1994) and are necessary for task-related firing and

the spatial tuning of pyramidal neurons during working memory (Rao et al.,

2000). In addition, the injection of GABA antagonists in the DLPFC disrupts

working memory performance (Sawaguchi et al., 1989). Thus, these findings

suggest that disturbances in GABA neurotransmission in the DLPFC could

contribute to the working memory impairments in schizophrenia.

Consistent with this hypothesis, markers of GABA neurotransmission are

altered in the DLPFC of subjects with schizophrenia. For example, reduced

expression of the mRNA for the 67-kDa isoform of glutamic acid decarboxylase

(GAD67), an enzyme that synthesizes GABA, (Akbarian et al., 1995; Guidotti
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et al., 2000; Hashimoto et al., 2005b; Mirnics et al., 2000; Vawter et al., 2002;

Volk et al., 2000) is one of the most consistent findings in postmortem studies of

individuals with schizophrenia (Torrey et al., 2005). The only exception to this

finding was reported in one cohort of elderly, chronically hospitalized individuals

with schizophrenia (Dracheva et al., 2004). Although less extensively studied, the

deficit in GAD67 mRNA appears to be accompanied by a corresponding decrease

in the cognate protein (Guidotti et al., 2000). In contrast, both the overall protein

and mRNA expression levels (Guidotti et al., 2000) of another synthesizing

enzyme for GABA, GAD65, and the density of GAD65-immunoreactive axon

terminals (Benes et al., 2000) were reported to be unchanged in the DLPFC of

subjects with schizophrenia. Interestingly, elimination of the GAD65 gene in mice

has a limited eVect on cortical levels of GABA, whereas genetically engineered

reductions in GAD67 mRNA expression are associated with profound decreases

in cortical GAD activity and GABA content (Asada et al., 1997).

In the DLPFC of subjects with schizophrenia, GAD67 mRNA expression is

undetectable in a subpopulation (about 25–30%) of GABA neurons (Akbarian

et al., 1995; Volk et al., 2000), whereas the majority of GABA neurons have

expression levels of GAD67 mRNA that do not diVer from normal comparison

subjects (Volk et al., 2000). Furthermore, in the same individuals, the mRNA

expression for the GABA membrane transporter (GAT1), a protein responsible

for reuptake of released GABA into nerve terminals, is similarly decreased in a

subpopulation of GABA neurons (Volk et al., 2001). The aVected GABA neurons

appear to be principally located in cortical layers 2–5; neither GAD67 nor GAT1

mRNA expression is altered in layer 6. Together, these findings suggest that both

the synthesis and reuptake of GABA are greatly reduced in a subset of DLPFC

inhibitory neurons in schizophrenia.

The aVected GABA neurons include those that contain the calcium-binding

protein parvalbumin (PV), which is present in �25% of GABA neurons in the

primate DLPFC (Condé et al., 1994), as demonstrated by the decreased expres-

sion of PV mRNA in layers 3 and 4, but not in layers 2, 5, or 6, of the DLPFC in

subjects with schizophrenia (Hashimoto et al., 2003). However, in contrast to the

findings for GAD67 and GAT1 mRNAs, the density of neurons with detectable

levels of PV mRNA was not changed in subjects with schizophrenia, but the

expression level of PV mRNA per neuron was significantly decreased. In addi-

tion, within the same subjects, the expression level of PV mRNA per neuron was

strongly correlated with the change in density of GAD67 mRNA-positive neu-

rons. Furthermore, dual label in situ hybridization studies demonstrated that

approximately half of PV mRNA-positive neurons in subjects with schizophrenia

lacked detectable levels of GAD67 mRNA (Hashimoto et al., 2003). Finally, these

findings were consistent with the results of immunocytochemical studies

that reported similar densities of PV-immunoreactive neurons in the DLPFC

of normal comparison and schizophrenia subjects (Beasley et al., 2002;
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Woo et al., 1997). Thus, PV-containing GABA neurons are not reduced in

number in the DLPFC of subjects with schizophrenia, but they do exhibit

reduced expression of several critical genes, indicating that they are present but

functionally impaired. In contrast, the expression of the mRNA for calretinin, a

calcium-binding protein present in �50% of GABA neurons in the primate

DLPFC (Condé et al., 1994), is not altered in schizophrenia (Hashimoto et al.,

2003), nor is the density of calretinin-immunoreactive neurons (Daviss and Lewis,

1995) or axon terminals (Woo et al., 1997).

In addition to their calcium-binding protein content, PV-containing neurons are

distinguishable from other cortical GABA neurons (Fig. 1) by their firing patterns,

preferred synaptic targets, and morphological features (Kawaguchi, 1995). For

example, in macaque monkey DLPFC, cluster analysis of multiple physiological

features revealed that PV-containing neurons are distinctly diVerent from all other

types of GABA neurons (Krimer et al., 2005; Zaitsev et al., 2005). Furthermore, PV-

positive neurons in the primate DLPFC are composed of two morphologically

distinct subtypes (Condé et al., 1994). Chandelier (or axoaxonic) neurons furnish a

linear array of axon terminals (termed cartridges) that synapse exclusively on the

axon initial segment of pyramidal neurons (Somogyi, 1977), whereas the axons of

wide-arbor (basket) neurons have a much larger spread than those of chandelier

cells and their axon terminals principally target the cell body and proximal

dendrites of pyramidal neurons (Lewis and Lund, 1990). Both of these types of

PV-containing neurons have indistinguishable fast-spiking, nonadapting patterns of

firing (González-Burgos et al., 2005). The proximity of the perisomatic inhibitory

synapses formed by PV-containing chandelier and wide-arbor neurons to the site of

action potential generation in pyramidal neurons suggests that these GABAneurons

are specialized to powerfully regulate the output of pyramidal neurons. For exam-

ple, during hippocampal oscillations in vivo chandelier cells exhibit maximal firing

probability 180� out of phase with pyramidal neurons, indicating the ability of in-

hibitory inputs from chandelier neurons to facilitate the rhythmic entrainment of

pyramidal cell discharge, time locking the activity of local populations of pyramidal

cells to fire together (Klausberger et al., 2003). In contrast, an in vitro study indicated

that GABA inputs to the axon initial segment of pyramidal neurons could actually

suYciently depolarize pyramidal cells to fire action potentials under certain condi-

tions (Szabadics et al., 2006); however, whether this observation holds under in vivo

conditions remains to be determined.

PV-containingGABA neurons also undergomarked and distinctive refinements

in the monkey DLFPC during adolescence (Fig. 2) (Cruz et al., 2003; Erickson and

Lewis, 2002). These developmental trajectories suggest that PV-containing neurons

contribute to the increased engagement of DLPFC circuitry in (Lewis, 1997), and

improved performance of (Diamond, 2002; Luna et al., 2004), working memory

during adolescence, providing rationale for the hypothesis that alterations in PV-

positive neurons contribute to working memory dysfunction in schizophrenia.
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Furthermore, these developmental changes during adolescence could contribute

to unmasking the consequences of inherited abnormalities in the regulation of

GABA neurotransmission in schizophrenia and may help explain why certain life

experiences during adolescence (e.g., stress or cannabis exposure) appear to

increase the risk of the illness (Lewis and Levitt, 2002). Consistent with this
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FIG. 1. Morphological and biochemical features of subclasses of cortical GABA neurons. This

schematic diagram illustrates the calcium-binding protein content (blue, parvalbumin; red, calbindin;

yellow, calretinin) and location of inhibitory synaptic inputs to a pyramidal neuron (green) of diVerent

morphological classes of cortical GABA neurons. The chandelier (Ch) and wide-arbor (WA) or basket

neurons provide inhibitory input to the axon initial segment (AIS) or cell body and proximal

dendrites, respectively, of pyramidal neurons. In contrast, the calbindin-containing double bouquet

(DB), neurogliaform (Ng), and Martinotti (M) neurons tend to provide inhibitory inputs to the distal

dendrites of pyramidal neurons. Finally, calretinin-containing neurons appear to target both

pyramidal cell distal dendrites and other GABA (G) neurons. CRC, Cajal-Retzius cell; PL,

pyramidal-like neuron. Reprinted from Lewis et al. (2005).
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hypothesis, the density of chandelier neuron axon cartridges immunoreactive for

GAT1 was significantly reduced in the DLPFC of subjects with schizophrenia

(Woo et al., 1998), with the eVect most significant in the middle cortical layers

(Pierri et al., 1999). In contrast, measures of GAT1 immunoreactivity in other

populations of axon terminals were unchanged (Woo et al., 1998). Thus, in concert

FIG. 2. Postnatal development of inputs from PV-containing GABA neurons to pyramidal neurons

in monkey DLPFC. The axon terminals of chandelier neurons form vertical arrays of boutons

(cartridges) that are immunoreactive for PV or GAT1 and that outline the axon initial segment of

pyramidal neurons. Although the developmental time course diVers somewhat for these two markers,

the density of labeled cartridges is low in the DLPFC of newborn monkeys, increases to reach a peak

prior to the onset of puberty, and then declines markedly during adolescence (shaded area between

15 and 42 months of age) to adult levels. These density changes in PV- and GAT-IR cartridges appear

to reflect developmental shifts in the concentration of these proteins. Interestingly, the peak and

subsequent decline in the density of labeled cartridges occur prior to the age when the peak density

of PV-immunoreactive varicosities, putative axon terminals from the wide-arbor (basket) class of

PV-containing GABA neurons is achieved. Postsynaptically, the detectability of the �2 subunit of the

GABAA receptor in pyramidal neuron axon initial segment (AIS) is high at birth, and then markedly

declines during adolescence before stable adult levels are achieved. Reprinted from Lewis et al. (2005).
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with the observations of cell type-selective alterations in gene expression, these

findings suggest that chandelier neurons in the DLPFC of subjects with schizo-

phrenia express decreased levels of PV mRNA and undetectable levels of GAD67

and GAT1 mRNAs, with the latter resulting in reduced GAT1 protein in chande-

lier neuron axon cartridges. The potential relevance of these findings for working

memory dysfunction in schizophrenia is strengthened by the failure to find such

disturbances in subjects with other psychiatric disorders or in monkeys exposed

chronically to antipsychotic medications in a fashion that mimics the clinical

treatment of schizophrenia (Hashimoto et al., 2003; Pierri et al., 1999; Volk et al.,

2000, 2001, 2002). Furthermore, GABA levels are not altered in the prefrontal

cortex of unmedicated subjects with remittedmajor depressive disorder, indicating

that if such changes are present in symptomatic depression (as suggested from

studies of the visual cortex (Sanacora et al., 1999)), they are not a persistent

characteristic of this illness (Hasler et al., 2005).

However, the pathophysiological significance of these changes depends on

how they aVect GABA neurotransmission at the synapse between the chandelier

neuron and the pyramidal cell axon initial segment. Specifically, do these find-

ings reflect deficient inhibition, resulting from a primary reduction in GABA

synthesis, or excessive inhibition, secondary to a reduction in GABA reuptake?

Interestingly, receptors containing GABAA �2 subunits are found principally at

inhibitory synapses onto pyramidal neuron axon initial segments (Nusser et al.,

1996). In the DLPFC of subjects with schizophrenia, the density of pyramidal

neuron axon initial segments immunoreactive for the GABAA �2 subunit is more

than double that of control subjects (Volk et al., 2002), apparently reflecting

higher levels of �2 subunits in the axon initial segment, since neither the density

of pyramidal neurons (Pierri et al., 2003) nor of their axon initial segments (Cruz

et al., 2004) is increased in these same subjects. Thus, in the DLPFC of subjects

with schizophrenia, GABAA receptors seem to be upregulated at pyramidal neuron

axon initial segments in response to deficient GABA release from chandelier

neuron axon terminals (Fig. 3).

Consistent with this interpretation, the reduced presynaptic levels of PV and

GAT1 in chandelier cells appear to represent compensatory responses to a deficit

in GABA release. For example, a reduction in PV would be expected to be

associated with increased GABA release since, by buVering presynaptic Ca2þ

transients, PV reduces the Ca2þ-dependent facilitation of GABA release during

periods of repetitive firing (Vreugdenhil et al., 2003). Similarly, reduced levels of

GAT1 would be expected to prolong the duration of inhibitory postsynaptic

currents (IPSCs) when neighboring synapses are activated synchronously (Overstreet

and Westbrook, 2003). Thus, the combination of reduced presynaptic levels of

PV and GAT1 proteins in chandelier axon cartridges and the postsynaptic upre-

gulation of GABAA receptors at the axon initial segment of pyramidal neurons

in the DLPFC of subjects with schizophrenia could act synergistically to increase
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the eYcacy of GABA neurotransmission at pyramidal cell axon initial segments

during the types of repetitive activity that are associated with working memory.

However, it appears that in schizophrenia these compensatory mechanisms are

not adequate to overcome the eVects of decreased GABA synthesis in chandelier

neurons.

Similar pre- and postsynaptic alterations might also be present in the inputs of

PV-containing wide-arbor neurons to the perisomatic region of pyramidal neu-

rons. For example, the density of PV-immunoreactive puncta, possibly the axon

terminals of wide-arbor neurons (Erickson and Lewis, 2002), is reduced in the

middle layers, but not in the superficial layers, of the DLPFC of subjects with

schizophrenia (Lewis et al., 2001), paralleling the laminar pattern of decreased PV

FIG. 3. Schematic summary of alterations in GABA circuitry in the DLPFC of subjects with

schizophrenia. Reduced levels of gene expression in chandelier neurons (blue) are associated with a

decrease in immunoreactivity (IR) for GAT1 in the axon cartridges of these neurons and an

upregulation of GABAA receptor �2 subunit immunoreactivity in the postsynaptic axon initial

segment of pyramidal neurons (green). In contrast, gene expression does not appear to be altered in

the calretinin-containing subclass of GABA neurons (yellow). Reprinted from Lewis et al. (2005).
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mRNA expression in schizophrenia (Hashimoto et al., 2003). Furthermore, the

increased density of GABAA receptors in the DLPFC of subjects with schizo-

phrenia found in ligand-binding studies (Benes et al., 1996; Hanada et al.,

1987) was most prominent at pyramidal neuron cell bodies (Benes et al., 1996).

Together, these data suggest that GABAA receptors located at the soma and axon

initial segments of pyramidal neurons are locally upregulated in schizophrenia in

response to a reduction in perisomatic inhibitory input from chandelier and

wide-arbor neurons.

However, abnormalities in PV neurons alone may not completely account for

the deficits in expression of GAD67 and GAT1 mRNAs since such changes were

also observed in cortical layers 1 and 2, where relatively few PV-containing

GABA neurons are located (Condé et al., 1994) and where no changes in PV

mRNA expression were found (Hashimoto et al., 2003). Thus, other subpopula-

tions of GABA neurons present in these layers, such as those that express the

calcium-binding protein calbindin and/or the neuropeptides somatostatin or

cholecystokinin, may also be altered in schizophrenia (Gabriel et al., 1996; Virgo

et al., 1995). Indeed, we reported a marked decrease in mRNA levels for the

somatostatin precursor protein in the DLPFC of subjects with schizophrenia

(Hashimoto et al., 2005a).

Are these abnormalities in GABA neurotransmission restricted to the DLPFC

or representative of a disturbance distributed across other cortical regions that

may contribute to other aspects of the clinical syndrome of schizophrenia? The

anterior cingulate cortex, superior temporal gyrus, and hippocampal formation

also appear to be sites of dysfunction in schizophrenia (Harrison and Lewis,

2003). Initial studies of the hippocampus reported a reduction in the density of

nonpyramidal, putatative GABA neurons (Benes et al., 1998) and an increase in

GABAA receptor binding (Benes et al., 1998) in schizophrenia. However, a study

from the same research group did not detect a diVerence in the expression of

either GAD67 or GAD65 mRNAs in the hippocampus of subjects with schizo-

phrenia, although both transcripts were found to decrease in subjects with bipolar

disorder (Heckers et al., 2002). In the anterior cingulate cortex of subjects with

schizophrenia, the densities of nonpyramidal neurons (Benes et al., 1998) and of

neurons immunoreactive for the calcium-binding protein calbindin (Cotter et al.,

2002) were reported to be reduced in layer 2, as was the density of GAD67

mRNA-positive neurons (Woo et al., 2004). Within the superior temporal gyrus,

GAD67 mRNA levels were found to be reduced (Impagnatiello et al., 1998).

In addition, the density of GAT1-immunoreactive axon cartridges was reduced

in this region, although to a much lower extent than in the DLPFC of the same

subjects with schizophrenia (Konopaske et al., 2006). Thus, the available data

suggest that alterations in GABA neurotransmission in schizophrenia may be a

common feature across regions of the neocortex, but not of the hippocampus

(Heckers et al., 2002).
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III. Potential Pathogenetic Mechanisms for Cell Type-Specific Alterations in GABA Neurons

Several diVerent mechanisms have been suggested as the proximal cause of the

alterations in PV-positive neurons in schizophrenia on the basis of correlated changes

in individuals with the illness and evidence from animal models that these correla-

tions represent cause and eVect (Lewis et al., 2005).Of these possibilities, alterations in

N-methyl-D-aspartate (NMDA) receptor-mediated excitatory neurotransmission

and deficits in neurotrophin signaling appear to have the strongest empirical basis.

A. REDUCED EXCITATORY DRIVE VIA NMDA RECEPTORS

The deficit in GAD67 mRNA expression has been suggested to represent an

activity-dependent change in response to reduced activity of excitatory circuits in

the DLPFC (Akbarian et al., 1995; Jones, 1997). One source of such excitatory

inputs is the mediodorsal nucleus of the thalamus, the principal source of

thalamic projections to the DLPFC. Interestingly, initial studies reported that

the number of neurons in this nucleus was reduced in subjects with schizophrenia

(Byne et al., 2002; Pakkenberg, 1990, 1992; Popken et al., 2000; Young et al.,

2000); however, studies have failed to confirm these observations (Cullen et al.,

2003; Danos et al., 2003; Dorph-Petersen et al., 2004; Nielsen et al., 2004; Young

et al., 2000). Furthermore, experimental reductions in neuron number in the

mediodorsal thalamus of rodents did not produce alterations in the expression

of GAD67 mRNA in the prefrontal cortex (Volk and Lewis, 2003). However,

a range of other alterations, such as a decreased density of dendritic spines

(a marker of excitatory synaptic inputs to pyramidal neurons) in the DLPFC of

subjects with schizophrenia (Garey et al., 1998; Glantz and Lewis, 2000), are

consistent with reduced excitatory drive in DLPFC circuits, although the source

of these altered inputs has yet to be determined.

One potential source of such altered inputs is the hippocampus. A variety of

structural and functional abnormalities in the hippocampus have been observed

in subjects with schizophrenia, and some of these appear to be correlated with

alterations in the DLPFC (Bertolino et al., 1996). To explore this association,

investigators have employed a rodent model in which lesions of the ventral

hippocampus are created neonatally (Lipska and Weinberger, 2000). In adult-

hood, these animals, in addition to mimicking a number of other phenotypic

features of schizophrenia, show deficits in GAD67 expression in the prefrontal

cortex (Lipska et al., 2003). However, whether the deficits in GAD67 mRNA

expression exhibit the cell type specificity, and are accompanied by the other

changes in GABA markers present in schizophrenia, has not yet been examined.

These alterations in excitatory neurotransmission might diVerentially aVect
PV-, and not calretinin (CR)-containing GABA neurons because PV-containing
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cells receive a larger complement of excitatory inputs (Lewis and Moghaddam,

2006). For example, in the rodent hippocampus, the total number of excitatory

synapses onto PV-positive neurons is nearly an order of magnitude greater than

the number onto CR-positive neurons (Gulyás et al., 1999). Similarly, the density

of asymmetric excitatory synapses on PV-positive dendrites in monkey DLPFC is

significantly greater than on CR-positive dendrites (Melchitzky and Lewis, 2003).

In addition, cell type diVerences have been reported for the NMDA receptor. For

example, immunoreactivity for the NMDAR1 subunit was detected in the

majority (50–90%) of PV-positive neurons, but in <10% of CR-positive neurons

in monkey neocortex (Huntley et al., 1994, 1997).

Convergent lines of evidence also indicate that PV-containing neurons are

particularly sensitive to manipulation of excitatory signaling via NMDA receptors.

First, administration of ketamine, an NMDA receptor antagonist, was associated

with a decrease in the density of PV-immunoreactive neurons in the rodent hippo-

campus (KeilhoV et al., 2004). Similarly, chronic exposure to PCP, another NMDA

receptor antagonist, also resulted in decreased PV mRNA expression in the pre-

frontal cortex (Cochran et al., 2003). Interestingly, in the latter study, the density of

PV mRNA-positive neurons was unchanged following PCP, but the expression

level of PVmRNA per neuron was decreased by 25%. These findings are strikingly

similar to the pattern of PV mRNA expression changes observed in the DLPFC

cortex of subjects with schizophrenia (Hashimoto et al., 2003). Second, in cultures of

mouse cortical neurons, ketamine induced a decrease in both PV and GAD67

immunoreactivity specifically in PV interneurons, an eVect that appeared to be

mediated by NR2A-, and not NR2B-containing NMDA receptors (Kinney et al.,

2006). Consistent with the cell-type selectivity of the eVect, the ratio of NR2A/

NR2B was observed to be fivefold higher in PV-positive neurons than in pyramidal

cells. Third, in living slice preparations from mouse entorhinal cortex, both the

genetically engineered reduction in lysophosphatidic acid-1 (LPA-1) receptor and

the acute blockade of NMDA receptors produced a laminar-specific decrease in

induced gamma oscillations (see below), and in the LPA-1-deficient animals, these

physiological changes were associated with an ~40% laminar-specific reduction in

the number of GABA- and PV-containing neurons, without a change in the

number of CR-positive neurons (Cunningham et al., 2006). Together, these findings

suggest that the alterations in GABA neurotransmission selective for PV-containing

neurons in schizophrenia might be a downstream consequence of impaired NMDA

receptor-mediated glutamatergic inputs.

B. REDUCED NEUROTROPHIN SIGNALING

Signaling by the neurotrophin, brain-derived neurotrophic factor (BDNF),

through its receptor tyrosine kinase (TrkB) promotes the development of GABA

neurons and induces the expression of GABA-related proteins, including GAD67
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and GAT1 (Marty et al., 2000; Yamada et al., 2002). In addition, TrkB is

predominantly expressed by PV-containing, and not by calretinin-containing,

GABA neurons, suggesting cell type-specificity of these eVects (Cellerino et al.,

1996). Indeed, in mice, genetically engineered to overexpress BDNF, the devel-

opment of cortical GABA neurons was accelerated and accompanied by a

precocious increase in the number of neurons containing PV (Huang et al.,

1999). Thus, reduced BDNF-TrkB signaling might be an ‘‘upstream’’ event

contributing to the altered expression of GABA-related genes in the DLPFC of

subjects with schizophrenia. Consistent with this hypothesis, the mRNA and

protein levels for both BDNF and TrkB reduced in the DLPFC of subjects with

schizophrenia (Hashimoto et al., 2005b; Weickert et al., 2003, 2005). In contrast,

levels of the mRNA encoding the receptor tyrosine kinase for neurotrophin-3,

TrkC, were unchanged (Hashimoto et al., 2005b).

Comparisons with the results of other studies indicate that these reduced

mRNA levels represent alterations in gene expression and not a loss of DLPFC

neurons in schizophrenia. For example, total neuron number is not altered in the

prefrontal cortex of subjects with schizophrenia (Thune et al., 2001). In addition,

the density of DLPFC pyramidal neurons has been reported to be modestly

increased across cortical layers (Selemon et al., 1995) or to be unchanged in

layer 3 (Pierri et al., 2003) in schizophrenia. Similarly, the density of all nonpyr-

amidal neurons has been reported to be slightly increased (Selemon et al., 1995)

or unchanged (Akbarian et al., 1995), and as noted above, the densities of PV-

immunoreactive (Beasley et al., 2002; Woo et al., 1997) and PV mRNA-positive

neurons (Hashimoto et al., 2003) were not altered in the DLPFC of subjects with

schizophrenia. Because BDNF mRNA is expressed by pyramidal neurons, and

because TrkB mRNA is expressed in both pyramidal and PV-containing GABA

neurons, the absence of a reduction in neuron number in both of these neuronal

populations in schizophrenia indicates that the decrease in BDNF and TrkB

mRNAs is due to a downregulation in the expression of the transcripts.

Consistent with the hypothesis that altered GABA-related gene expression is

driven by reduced BDNF-TrkB signaling in schizophrenia subjects, the changes in

TrkB and GAD67 mRNA expression levels were strongly correlated (r ¼ 0.74,

p < 0.001) in the same subjects, and a positive correlation between the changes in

BDNF andGAD67mRNA expression levels (r¼ 0.52, p¼ 0.007) was also observed.

Interestingly, the correlation was significantly (p ¼ 0.043) stronger between TrkB

and GAD67 mRNAs than between BDNF and GAD67 mRNAs, suggesting

that altered TrkB might be a pathogenetic mechanism driving the reduced

GABA-related gene expression in schizophrenia.

Of course, such correlations in human studies do not demonstrate a cause

and eVect relationship. However, the idea that reduced signaling through TrkB

receptors could be a primary determinant of cortical GABA-related gene expres-

sion changes in schizophrenia was supported by studies in TrkB hypomorphic
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mice in which the insertion of floxed TrkB cDNA ( fBZ) resulted in decreased

TrkB expression (Xu et al., 2000a). Compared to wild-type mice, TrkB mRNA

expression levels in the prefrontal cortex were significantly decreased by 42% and

75% in mice with fBZ/þ and fBZ/fBZ genotypes, respectively, and in fBZ/fBZ

mice, expression levels of GAD67 and PV mRNAs in the prefrontal cortex were

significantly decreased by 25% and 40%, respectively (Hashimoto et al., 2005b).

In addition, in the fBZ/þ mice, the expression levels of GAD67 and PV mRNAs

were intermediate between the wild-type control and fBZ/fBZ mice. Further-

more, the cellular pattern of reduced GAD67 mRNA expression in these mice

precisely paralleled that seen in schizophrenia (Volk et al., 2000). That is, the

density of neurons with detectable levels of GAD67 mRNA was significantly

reduced, but the level of GAD67 mRNA expression per neuron was unchanged

(Hashimoto et al., 2005b). Furthermore, consistent with the selective vulnerability

of a GABA neuron subpopulation in schizophrenia, TrkB genotype had no eVect
on the expression of calretinin mRNA. Thus, the alterations in GABA-related

gene expression in TrkB hypomorphic mice replicate those found in subjects with

schizophrenia at both the tissue and cellular levels.

In contrast, although BDNF mRNA expression was decreased by 80% in

the prefrontal cortex of mice with a neuron-specific inducible knockout of bdnf

(Monteggia et al., 2004), no alterations in the expression levels of GAD67 or PV

mRNAs were present in these animals, whether the bdnf knockout was induced

during embryogenesis or in adulthood (Hashimoto et al., 2005b). Together, these

findings suggest that changes in TrkB expression, and not in BDNF expression,

regulate GABA-related gene expression in the prefrontal cortex.

Thus, these observations support the hypothesis that the deficit in expression

of GAD67 mRNA in schizophrenia is the direct result of reduced TrkB expres-

sion in GABA neurons. However, this expression deficit may also be an indirect

consequence of alterations in pyramidal neurons. For example, BDNF-TrkB sig-

naling appears to promote somatodendritic development (McAllister et al., 1995;

Xu et al., 2000b) and spine formation (Horch et al., 1999) in pyramidal neurons,

although spine density was not reduced in the prefrontal cortex of mice with the

inducible knockout of bdnf (Hill et al., 2005). Interestingly, in the DLPFC of

subjects with schizophrenia, pyramidal neurons exhibit decreased somal size,

dendritic length, and spine density (Garey et al., 1998; Glantz and Lewis, 2000;

Pierri et al., 2001; Rajkowska et al., 1998), consistent with an eVect of reduced
BDNF-TrkB signaling on pyramidal neurons in the illness. These findings, in

concert with evidence that BDNF-TrkB signaling directly aVects the eYcacy of

excitatory neurotransmission among pyramidal neurons (Kang and Schuman,

1995; Xu et al., 2000a), suggest that reduced expression of TrkB in pyramidal

neurons may both alter their morphology and cause a decrease in their activity.

The resulting reduction in pyramidal neuron activity may lead to reduced gene

expression in GABA neurons, especially those containing PV, which (in contrast
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to calretinin-containing GABA neurons) receive direct excitatory inputs from

neighboring pyramidal neurons (Melchitzky and Lewis, 2003).

IV. Connecting Alterations in PV-Positive Neurons to Working Memory Impairments:
Decreased Gamma Band Synchrony in Schizophrenia

If reduced signaling via the TrkB receptor results in deficient chandelier cell-

mediated inhibition of pyramidal neurons, how do such changes in GABA

neurotransmission give rise to altered working memory? Interestingly, PV-con-

taining inhibitory neurons are involved in the induction and maintenance of

gamma oscillations in pyramidal neurons. In particular, networks of PV-contain-

ing, fast-spiking GABA neurons in the middle cortical layers, formed via both

chemical and electrical synapses, give rise to oscillatory activity in the gamma

band (30–80 Hz) range (Tamas et al., 2000). The coordinated oscillatory context

provided by these networks of inhibitory neurons is thought to create the discrete

temporal structure necessary for ensembles of pyramidal neurons to perform

specific functions, such as those involved in working memory.

Consistent with this interpretation, gamma band oscillations are induced and

sustained in the DLPFC during the delay period of working memory tasks

(Tallon-Baudry et al., 1998). In addition, the amplitude, or power, of gamma

oscillations in the DLPFC appears to increase in proportion to working memory

load (Howard et al., 2003). In the frontal cortex of subjects with schizophrenia,

phase locking of gamma activity to the stimulus onset is impaired (Spencer et al.,

2003), and gamma band power in the DLPFC is reduced during the delay period

of a working memory task (Cho et al., 2004).

Thus, a deficit in pyramidal cell synchronization, resulting from impaired

perisomatic inhibition via PV-containing GABA neurons, may contribute to the

reported deficits in gamma oscillations, and consequently working memory dys-

function, in schizophrenia. Several features of PV-containing neurons, and of their

alterations in schizophrenia, may explain how this occurs. First, the axonal arbor-

izations of individual chandelier and wide-arbor neurons are highly divergent and

target the axon initial segments and cell bodies, respectively, of a large number of

pyramidal neurons (Peters, 1984), enabling them to regulate the firing of local

groups of pyramidal neurons (Cobb et al., 1995). Second, in the monkey DLPFC,

PV-containing GABA neurons and pyramidal cells share certain excitatory inputs

in common, including projections from neighboring pyramidal neurons and from

the mediodorsal thalamus (Melchitzky and Lewis, 2003; Melchitzky et al., 1999,

2001). Thus, excitatory input from these sources stimulates both PV-containing

and pyramidal neurons simultaneously, resulting in a secondary, temporally delayed
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perisomatic inhibitory input to pyramidal neurons. This disynaptic inhibitory input

appears to limit the window of time, and thereby increases the temporal precision,

for the summation of excitatory inputs needed to evoke pyramidal neuron firing

(Pouille and Scanziani, 2001). Consequently, a deficiency in chandelier cell and/or

wide-arbor neuron perisomatic input to pyramidal neurons would be expected to

reduce the magnitude of pyramidal cell synchrony, and thus of gamma band power,

in the DLPFC.

V. Treatment Implications

How do these findings inform our understanding of novel targets for phar-

macological intervention in schizophrenia? Drugs with selective agonist activity

at GABAA receptors containing the �2 subunit may provide an eVective
approach to enhance chandelier neuron inhibition of DLPFC pyramidal neu-

rons in schizophrenia by increasing the synchronization of pyramidal cell firing

at gamma frequencies and consequently improving working memory function

(Lewis et al., 2004; Volk and Lewis, 2005). The �2 subunit of the GABAA receptor

represents a highly selective target for enhancing inhibition at the axon initial

segment of pyramidal neurons because it is predominantly restricted to this

location (Nusser et al., 1996).

Drugs that directly activate �2-containing GABAA receptors independent of

the presence of GABA, or that generally increase the firing rate of chandelier

cells, may actually disrupt the timing of disynaptic inhibition of pyramidal

neurons. Furthermore, agents that nonselectively inhibit GABA reuptake may

act too broadly at other GABA synaptic sites that are not altered in schizophre-

nia. In contrast, drugs that enhance the postsynaptic response to the release of

GABA from chandelier cell axons, such as a GABAA �2-selective benzodiaze-

pine, would increase the frequency of opening of chloride ion channels in the

presence of GABA. Currently available benzodiazepines are not selective for

GABAA receptors containing the �2 subunit, and might cause a generalized and

nonspecific increase in cortical inhibition. Thus, treatment with an �2-selective

benzodiazepine would be predicted to augment the postsynaptic inhibitory

response at pyramidal neuron axon initial segments in a manner that incorpo-

rates the critical timing of chandelier neuron firing essential for synchronizing

pyramidal neuron activity. Furthermore, since the anxiolytic eVects of benzo-

diazepines appear to be mediated by GABAA receptors that contain the �2 sub-

unit (Löw et al., 2000), �2-specific agents may both improve cognitive function

and reduce the stress responses that have been linked to the exacerbations of

psychotic symptoms in schizophrenia (Carpenter et al., 1999).
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A role for serotonin alterations in the pathophysiology of schizophrenia has

long been suspected because of the psychotogenic eVects of serotonergic agonists

and the therapeutic eVects of 5-HT2 antagonism. This chapter is a review of the

evidence derived from pharmacological studies, postmortem, and imaging

studies that have assessed the role of serotonin transmission in schizophrenia.

While a clear picture of specific serotonergic alterations in schizophrenia has not

emerged despite much research, this review reinforces a modulatory role of

serotonergic agents on dopamine transmission in schizophrenia, which may

contribute to the therapeutic eVects of atypical antipsychotics.

I. Introduction

A dysfunction of 5-hydroxytryptamine (5-HT) function in schizophrenia

was first postulated because of the structural similarity between 5-HT and

the hallucinogenic drug lysergic acid diethylamide (LSD; Gaddum, 1954;
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Wooley and Shaw, 1954) and renewed after the introduction of clozapine in the

United States, a drug with negligible liability for extrapyramidal side effects (EPS)

and superior antipsychotic properties compared to typical antipsychotics (Kane

et al., 1988). The superior eYcacy of clozapine has been attributed to its relatively

potent 5-HT2 receptor antagonism (Meltzer, 1991), prompting the development

of pure 5-HT2 antagonists or ‘‘balanced’’ 5-HT2-D2 antagonists as potential

antipsychotics. So far, available data indicates acceptable antipsychotic eYcacy

for combined 5-HT2-D2 antagonists, but not for pure 5-HT2 antagonists. At the

same time, we have learned more about the potential role of other serotonergic

receptors in the action of atypical antipsychotics. In addition, postmortem stud-

ies, cerebrospinal fluid (CSF), clinical challenge, and imaging studies of seroto-

nergic receptors and transporters performed over the last decade have suggested

a serotonergic dysfunction in the brains of patients with schizophrenia. In this

chapter, we will first review the evidence for alterations of serotonin transmission

in schizophrenia and its implications for the therapeutic eVects of antipsychotics.
The putative role of 5-HT transmission in schizophrenia will then be discussed in

the context of all the data reviewed, the relevant dopaminergic and serotonergic

interactions, and the recent advances in the conceptualization of the dopamine

(DA) hypothesis of schizophrenia.

II. Alteration of 5-HT Receptors in Schizophrenia

The involvement of alteration of 5-HT transmission in the pathophysiology

of schizophrenia is supported by numerous postmortem studies, which have been

reviewed elsewhere (Abi-Dargham et al., 1997; Breier, 1995; Lieberman et al.,

1998; Meltzer et al., 1999). The most consistent abnormalities of 5-HT markers in

schizophrenia are a reduction in cortical 5-HT transporters density and an

increase in cortical 5-HT1A receptor binding. A decrease in 5-HT2A density

has also been frequently noted, but this observation might be secondary to

previous neuroleptic exposure (Table I).

A. 5-HT TRANSPORTERS

5-HT transporters are located on presynaptic serotonergic terminals and are

believed to provide an index of serotonergic innervation. Three studies reported

decreased density of 5-HT transporters in the frontal cortex of patients with

schizophrenia. Laruelle et al. (1993) reported decreased density of 5-HT trans-

porters, labeled with [3H]paroxetine, in the frontal cortex of schizophrenic

patients, as compared to controls, while no changes were observed in the
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TABLE I

ALTERATIONS IN 5-HT RECEPTORS IN SCHIZOPHRENIA: POSTMORTEM STUDIES

References Site Ligand Bmax KD Brain region

Ohuaha et al. (1993) 5-HT uptake site [3H]citalopram Decrease No change Frt Ctx

Laruelle et al. (1993) [3H]citalopram Decrease No change Frt Ctx

Joyce et al. (1993) [3H]cyanoimipramine Decrease No change Frt Ctx

Dean et al. (1995) [3H]citalopram No change Increase Hippocampus

Hashimoto et al. (1991) 5-HT1A [3H]8-OH-DPAT Increase Frt Ctx, BA 10

Temp Ctx

Joyce et al. (1993) [3H]8-OH-DPAT Nonsignificant

increase

Frt Ctx BA 9, Cing Ctx

Motor Ctx, Hippoc.

Simpson et al. (1996) [3H]8-OH-DPAT Increase Frt Ctx BA 12 and 11

Sumiyoshi et al. (1996) [3H]8-OH-DPAT Increase PFC

Burnet et al. (1996b) [3H]8-OH-DPAT Increase Frt Ctx BA 46

Burnet et al. (1997) [3H]8-OH-DPAT Increase Frt Ctx BA 46

Gurevich et al. (1997) [3H]WAY-100635 Increase Frt Ctx BA 9, 44, 6, Cing

Ctx

Dean et al. (1999) [3H]8-OH-DPAT No change Frt Ctx BA 9, 8, 10

Bennett et al. (1979) 5-HT2 [3H]LSD Decrease No change Frt Ctx

Whitaker et al. (1981) [3H]LSD No change No change Frt Ctx

Mita et al. (1986) [3H]ketanserin Decrease No change Frt Ctx

Arora and Meltzer (1991) [3H]spiperone Decrease No change Frt Ctx

Reynolds et al. (1983) [3H]ketanserin No change No change Frt Ctx

Laruelle et al. (1993) [3H]ketanserin No change No change Frt Ctx

Joyce et al. (1993) [3H]ketanserin No change No change Frt Ctx

Dean et al. (1999) [3H]ketanserin Decrease Frt Ctx BA 9

Abi-Dargham et al. (1993) 5-HT3 [3H]LY278584 No change No change Amygdala

Dean et al. (1999) 5-HT4 3H]GR113808 No change Frt Ctx BA 9, 8, 10

1
3
5



occipital cortex of the same subjects (Laruelle et al., 1993). Joyce et al. (1993)

reported decreased 5-HT transporter density, labeled with [3H]cyanoimipramine,

in the frontal and cingulate cortices in patients with schizophrenia, while no changes

were observed in the motor cortex, temporal cortex, and hippocampus. In the same

schizophrenic patients, increased 5-HT transporter density was observed in the

striatum. Ohuoha et al. (1993) reported decreased density of 5-HT transporters,

labeled with [3H]citalopram in the frontal cortex of schizophrenic patients as

compared to controls. Dean et al. (1995) reported decreased aYnity of the transpor-

ters in the hippocampus but did not replicate the findings of decreased 5-HT

transporters in the frontal cortex in schizophrenia, possibly due to methodological

diVerences, as they examined a diVerent area of the frontal cortex than did the other
investigators. Similarly negative findings were reported by Gurevich et al. (1997).

Brain-imaging studies provide the opportunity to study well-characterized and

medication free patients. However, the development of radiotracers for in vivo imag-

ing of serotonin transporter (SERT) has been diYcult. [11C] 3-Amino-4-(2-dimethyl-

aminomethyl-phenylsulfanyl)-benzonitrile (DASB) was successfully produced and

evaluated in humans (Ginovart et al., 2001; Houle et al., 2000; Meyer et al., 2001).

[11C]DASB provides higher specific to nonspecific binding ratios than previous

tracers such as [11C]McN 5652, and thus an enhanced reliability in the assessment

of SERT density (Frankle et al., 2004; Huang et al., 2002; Szabo et al., 2002).

We used [11C]DASB to compare SERT availability between medication-free

subjects with schizophrenia and matched controls. Brain regions included in

this analysis were those where the concentration of SERT is high enough for

[11C]DASB to provide reliable quantification of SERT availability. There were

no significant group diVerences in SERT availability in any brain region. This

study failed to support the postmortem findings of decreased SERTaYnity in the

hippocampus in schizophrenia (Dean et al., 1995; Naylor et al., 1996) as well as

the decrease in SERT in the cingulate cortex observed in one postmortem study

( Joyce et al., 1993). In the midbrain, this study agreed with the negative results of

the previous imaging study with [123I ]�-CIT (Laruelle et al., 2000).

In addition, the level of SERT binding was not significantly related to the

severity of positive, negative, or depressive symptoms.

Studies in larger samples with radiotracers which allow quantification of

cortical 5-HT transporters may be needed to provide a more definitive picture

of serotonin innervation in brains of patients with schizophrenia.

B. 5-HT1A RECEPTORS

As noted by Joyce, ‘‘Postmortem studies of the concentration of 5-HT1A

receptors in schizophrenic patients represent a rare consensus in schizophrenia:

all studies published to date found an elevation of this receptor subtype in
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schizophrenic patients’’ (Gurevich and Joyce, 1997). With the exception of one

negative study (Dean et al., 1999), seven out of eight studies reported elevations of

5-HT1A receptors in frontal cortex of patients with schizophrenia (Burnet et al.,

1996b, 1997; Gurevich and Joyce, 1997; Hashimoto et al., 1991; Joyce et al.,

1993; Simpson et al., 1996; Sumiyoshi et al., 1996). All studies were performed

with the 5-HT1A receptor agonist [3H]8-hydroxy-2-[di-n-propyl-amino]tetralin

([3H]8-OH-DPAT), except for the study of Burnet et al. (1997), which used [3H]

WAY-100635. Two studies were performed with homogenate binding and five

with autoradiography. All studies included samples from the Prefrontal Cortex

(PFC): a significant increase has been reported in all prefrontal Brodmann areas

(BA) studied, including the dorso-lateral-prefrontol cortex (DLPFC) (areas 8, 9, 45,

and 46), the frontal pole (BA 10), the orbitofrontal cortex (OFC) (BA 11 and 12), and

some premotor areas (BA 44, 6). The eVect size (diVerence in the means divided by

SD) varied considerably, from small (0.24) to large (1.13), with an average eVect size
of 0.85� 0.34. A similar eVect size was obtained when the average was weighted by
the number of cases included per study. Combined, these studies reached a signifi-

cant level of p¼ 0.0006. Other regions were evaluated: in the cingulate, two studies

reported an increase and two found no change. An increase was also reported in the

temporal cortex, motor cortex, and hippocampus, but none of these findings were

confirmed by the other studies.

The finding of increased 5-HT1A receptors was reported in patients on and

oV drugs at time of death. Moreover, subchronic (21 days) treatment with

haloperidol or clozapine does not aVect the density of prefrontal 5-HT1A recep-

tors (Burnet et al., 1996a; Shapiro et al., 1995; Stockmeier et al., 1996). However,

as most patients received antipsychotics and other psychotropic medications for

years, the possibility that this increase may be a long-term eVect of treatment

cannot be excluded. An increase in 5-HT1A receptors in the OFC (but not the

DLPFC) has also been reported in suicide victims (Arango et al., 1995), raising

questions about the disease specificity of this alteration in patients with schizo-

phrenia. However, four studies failed to detect abnormalities in [3H]8-OH-

DPAT binding in the frontal cortex of suicide victims (Arranz et al., 1994; Dillon

et al., 1991; Lowther et al., 1997; Matsubara et al., 1991). In the PFC, 5-HT1A

receptors are concentrated in layers I-II, with lower densities in layers III-IV

(Dillon et al., 1991; Hoyer et al., 1986a; Joyce et al., 1993; Lidow et al., 1989).

At the ultrastructural level, prefrontal neuronal 5-HT1A receptors are mostly

present on the axon hillock of pyramidal cells (Azmitia et al., 1996; Francis et al.,

1992). Striatal lesions which induce a degeneration of corticostriatal projections

decrease 5-HT1A receptors in the deep cortical layers, indicating that 5-HT1A

receptors are located on pyramidal cells projecting to the striatum (Francis et al.,

1992). In primate pyramidal cortical neurons, 5-HT1A receptors are observed in

high levels in the initial segment of the axons (axon hillock; Azmitia et al., 1996).

This localization is consistent with inhibition of action potential by 5-HT1A
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agonists (Azmitia et al., 1996). Given the postmortem and clinical suggestion of

reduced 5-HT innervation in the PFC in schizophrenia, one could propose that

the increase in 5-HT1A receptors observed in this regionmay be due to a functional

upregulation of these receptors. This hypothesis is not supported by a majority of

studies in rodents, which failed to observe an upregulation of 5-HT1A receptors

following 5.7-dihydroxytryptamine lesions of the 5-HT system (Hensler et al.,

1991; Kia et al., 1996; Lawrence et al., 1993; Pranzatelli et al., 1994). Nevertheless,

if the alteration of the 5-HT system in the PFC in schizophrenia is neurodevelop-

mental, the relevance of lesions in adult rodents is limited. A neurodevelopmental

alteration is suggested by the study of Slater et al. (1998) showing a lack of regres-

sion of vermal 5-HT1A receptors in cerebellum of patients with schizophrenia

compared to controls.

Unfortunately this consistent data from postmortem studies received little

support from the imaging studies undertaken to better explore the clinical

relevance of these findings.

Three studies examined 5-HT1A receptor levels in schizophrenia relative

to controls in vivo using [11C]WAY 100635 positron emission tomography

(PET). In the first study, Tauscher et al. (2002) reported an overall increase in

[11C]WAY 100635 binding across nine regions in subjects with schizophre-

nia compared to controls, with post hoc analysis revealing significant diVer-
ence in the medial temporal cortex. The second PET study to explore this issue

found a reduction in 5-HT1A-binding parameters in the amygdala (Yasuno et al.,

2004).

In the third study, we used [11C]WAY 100635 to compare 5-HT1A availabi-

lity between medication free subjects with schizophrenia and matched controls.

We investigated the same brain regions where diVerences in the density of 5-HT1A

receptors in schizophrenia have been described as well as additional regions in

which the concentration of 5-HT1A is high enough for [11C]WAY 100635 to

provide reliable quantification of 5-HT1A availability. These regions included four

prefrontal cortical regions (dorsolateral, medial, orbital, and subgenual), the

parietal, temporal, and occipital cortices, the anterior cingulate cortex, insular

cortex, the medial temporal lobe (amygdala, entorhinal cortex, hippocampus, and

parahippocampal gyrus), and the dorsal raphe nucleus. We found no significant

group diVerences in 5-HT1A availability in any brain region. Within the patient

group, the level of 5-HT1A binding was not significantly related to the severity of

positive, negative, or depressive symptoms. The explanation for the diVerence in
findings among all three studies, reporting increase, decrease, and no change, in

our case, is not clear. The sample size in the present study was slightly larger than

either of the two prior studies. There were fewer drug-naive subjects in our sample

compared to the study of Tauscher et al. (2002). However, we did not detect a

diVerence in [11C]WAY 100635 binding when the data from these individuals was

analyzed separately. Slight diVerences in methodology exist across the studies,
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including a longer scan time in the current study (110min vs 60min; Tauscher et al.,

2002, and 90min; Yasuno et al., 2004) and diVerent datamodeling strategies (kinetic

modeling with arterial input in the current study compared with a reference region

approach in the other two studies). These technical diVerences would be expected to
aVect the schizophrenic and control groups equally within each study, and therefore
one would expect similar results across studies. In fact, when we analyzed our data

using a reference region approach we found no diVerences between the groups.

Although diVerences exist between these three PET studies, none of the

studies confirmed the findings reported in the postmortem literature exploring

5-HT1A density in schizophrenic subjects. The postmortem studies report an

increase in 5-HT1A density in subjects with schizophrenia when compared to

controls. This increase is observed in the dorsolateral prefrontal cortex in most

studies (Burnet et al., 1996b, 1997; Gurevich and Joyce, 1997; Hashimoto et al.,

1991; Simpson et al., 1996; Sumiyoshi et al., 1996), as well as in the anterior

cingulate (Burnet et al., 1996b; Gurevich and Joyce, 1997; Joyce et al., 1993) and

motor cortex (Gurevich and Joyce, 1997; Joyce et al., 1993) in others. The reason

for this lack of consistency in findings may relate to the resolution of these very

diVerent techniques. Some postmortem studies show more pronounced increase

in 5-HT1A density within superficial cortical layers (Gurevich and Joyce, 1997),

whereas others show no diVerence while exploring specific cellular locations

within the prefrontal cortex such as the axon initial segment (Cruz et al., 2004).

Using PET, with the currently available technology, it is not possible to explore

layer specific diVerences in receptor density within the cortex, limiting the

resolution of these types of studies to relatively large cortical regions.

C. 5-HT2 RECEPTORS

Studies of 5-HT2 receptors in the frontal cortex of patients with schizophre-

nia have generated conflicting results. Early studies were performed with

[3H]LSD, a ligand which labels both 5-HT1 and 5-HT2 families (Peroutka and

Snyder, 1979). Bennett et al. (1979) reported decreased [3H]LSD binding in

the frontal cortex of patients with schizophrenia as compared to controls.

Because [3H]5-HT binding was not reduced in these samples, the decreased

[3H]LSD binding was attributed to the 5-HT2A sites, which display relatively low

aYnity for 5-HT. A second study performed with [3H]LSD showed no diVer-
ences in the frontal cortex between schizophrenic and control samples (Whitaker

et al., 1981).

The more selective 5-HT2 ligands [
3H]ketanserin and [3H]spiperone, were

used in five studies to evaluate frontal density of 5-HT2 receptors. Since both

ligands are relatively more selective for 5-HT2A than 5-HT2C (Choudhary et al.,

1992; Leysen, 1990), these studies can be viewed as measuring the 5-HT2A rather
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than the 5-HT2C. Three studies demonstrated a significant decrease in 5-HT2

density in the frontal cortex of schizophrenic patients (Arora and Meltzer, 1991;

Dean et al., 1999; Mita et al., 1986) while no changes were reported in the other

three studies ( Joyce et al., 1993; Laruelle et al., 1993; Reynolds et al., 1983). Given

that 5-HT2 antagonists downregulate 5-HT2 receptors (Andree et al., 1986;

Helmeste and Tang, 1983; Leysen et al., 1987) and that most antipsychotic drugs

display 5-HT2 antagonism (Leysen et al., 1978, 1982; Wander et al., 1987), these

diVerences may reflect diVerences in the antemortem medication. Supporting

this interpretation, a PET study with [18F]setoperone failed to detect any signifi-

cant changes in 5-HT2 density in drug-naive patients with schizophrenia (Lewis

et al., 1997). Alternatively, these diVerences in the density of 5-HT2 receptors in

the frontal cortex in schizophrenia may be related to the heterogeneity of the

disease. Laruelle et al. (1993) observed that, while schizophrenic patients who

committed suicide had 5-HT2 levels comparable to controls, schizophrenic

patients who died from natural causes had significantly lower 5-HT2 levels than

controls. Interestingly, none of the patients in the series of Mita et al. (1986) and

Arora et al. (1991) committed suicide. Thus, three studies suggest decreased

frontal 5-HT2 density in nonsuicide schizophrenic patients. The cause of death

was not reported by Reynolds et al. and the series of Joyce et al. included both

suicide and nonsuicide victims. The significance of this finding is unclear. Suicide

per se has been associated with increased frontal 5-HT2 receptor density in some

(Arango et al., 1990; Hrdina et al., 1993; Mann et al., 1986; Stanley and Mann,

1983) but not all (Cheetham et al., 1988; Gross-IsseroV et al., 1990; Laruelle et al.,

1993; Lowther et al., 1994; Owen et al., 1983, 1986) postmortem studies. There-

fore, this factor has to be controlled for in studies of 5-HT2 density in schizophre-

nia as it may account for some of the discrepancies in the findings. Decreased

5-HT2 density may be associated with predominantly negative symptoms and a

lower incidence of suicide.

Three PET studies in drug-naive or drug-free patients with schizophrenia

reported normal cortical 5-HT2A receptor binding (Lewis et al., 1999; Okubo

et al., 2000; Trichard et al., 1998), while one study reported a significant decrease

in PFC 5-HT2A binding in a small group (n ¼ 6) of drug-naive schizophrenic

patients (Ngan et al., 2000).

D. OTHER RECEPTORS

No change in the density of 5-HT3 receptors was observed in the amygdala of

patients with schizophrenia (Abi-Dargham et al., 1993). A study found no change

in the density of 5-HT4 receptors in frontal cortex of patients with schizophrenia

(Dean et al., 1999).
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III. Pharmacological Manipulation of 5-HT Transmission in Schizophrenia

In addition to the direct evidence reviewed above that 5-HT transmission

might be aVected in schizophrenia, pharmacological interventions modifying

5-HT transmission provided data implicating 5-HT transmission in the media-

tion of schizophrenia symptomatology. This evidence is specially compelling

regarding interventions modifying 5-HT2A receptor function.

A. 5-HT PRECURSORS

The amino acid L-tryptophan is the dietary precursor of 5-HT. Administration

of large doses of L-tryptophan increases the synthesis of 5-HT in the brain (Wurtman

et al., 1981). During the 1960s and 1970s, numerous studies examined the eVects of
5-HT precursors on the clinical symptoms of schizophrenia. Lauer et al. (1958) and

Pollin et al. (1961) administered tryptophanwith iproniazid to schizophrenic patients

and reported mood elevation, increased involvement, and motor activity. Given

the concomitant use of Monoamine oxidase inhibitors (MAOI), these data are

diYcult to interpret. Bowers (1970) reported mild improvement in Brief Psychiatric

Rating Scale (BPRS) in schizophrenic patients treated with L-tryptophan at doses of

2–4 g/day in combination with vitamin B6. Gillin et al. (1976) observed that trypto-

phan administration (20 g/day) had no eVect in schizophrenia. Chouinard et al.

(1978) tested the clinical eYcacy of tryptophan (2–6 g/day) and benserazide coad-

ministration against chlorpromazine, and concluded that the antipsychotic action of

the tryptophan-benserazide combination was inferior to that of chlorpromazine.

Morand et al. (1983) described a decrease in aggressivity in schizophrenic patients

treated by tryptophan (4 g/day). In summary, tryptophan administration may

produce a limited improvement in negative symptoms. Of interest is the fact that

worsening of psychosis was not reported. Similar results were reported during the

administration of the immediate 5-HTprecursor, L-5-hydroxytryptophan, although

some patients presented exacerbation of psychotic symptoms, maybe related to the

fact that L-5-hydroxytryptamine administration increases also catecholaminergic

function (Bigelow et al., 1979; van Praag et al., 1987; Wyatt et al., 1972).

B. 5-HT DEPLETING AGENTS

Two studies with limited number of patients investigated the eVects of the
tryptophan hydroxylase inhibitor, p-chlorophenylalanine (pCPA). Casachia et al.

(1975) reported improvement in three out of four acute schizophrenics during

pCPA treatment (1250 mg/day), while DeLisi et al. (1982) reported no significant
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changes in chronic schizophrenic patients (n ¼ 7, 3000 mg/day). Fenfluramine, a

halogenated amphetamine derivative, is believed to cause depletion of the sero-

tonergic system when administered chronically. Shore et al. (1985) and Stahl et al.

(1985) failed to show significant changes during fenfluramine treatment in

placebo-controlled studies (8–12 weeks). Soper et al. (1990) demonstrated that

fenfluramine treatment produced worsening of communication competence and

thought disorder in treatment-resistant schizophrenic patients. In summary, these

studies suggest that 5-HT depleting agents are not useful in the treatment of

schizophrenia, and may even further impair cognitive functioning.

C. 5-HT2A AGONISM: LSD AND ‘‘MODEL’’ PSYCHOSIS

The observation of an LSD-induced psychosis in healthy subjects was the first

indication of a potential relationship between serotonin function and schizophre-

nia. The early reports in the 1950s emphasized the clinical similarities between

LSD-induced psychosis and schizophrenia (Rinkel et al., 1955). These were fol-

lowed by numerous studies which examined carefully the diVerences such as the

prevalence of visual as opposed to auditory hallucinations, the absence of thought

disorder, the preservation of aVect and insight (Hollister, 1962). However, these

diVerences were lessened when the comparison involved early as opposed to

chronic schizophrenics (Freedman and Chapman, 1973) and when cross-cultural

diVerences in schizophrenic symptomatology were examined (Murphy et al.,

1963). One study (Langs and Barr, 1968) attempted to compare LSD eVects to
the diVerent subtypes of schizophrenia and found similarities between the drug

group and the paranoid but not the undiVerentiated patients. Interestingly

enough, the authors described a higher rate of overlap of symptoms for those drug

subjects with poorly integrated premorbid personality. Overall, LSD-induced

psychosis seemed to be a potential model for some (i.e., hallucinations and

paranoid delusions), but not all aspects of schizophrenia (such as disorganiz-

ation and negative symptoms; Fishman, 1983). Administration of mescaline

(3,4,5-trimethoxyphenethylamine), a phenethylamine hallucinogen, to healthy

volunteers resulted, similarly, in symptoms of dissolution of ego boundaries, visual

hallucinations, ‘‘oceanic boundlessness,’’ and passivity experiences (Hermle et al.,

1992). Similar findings were described in humans with psilocybin (Vollenweider

et al., 1998). Disturbances in performance on neuropsychological tasks and altera-

tions of cerebral blood flow measured with single photon emission tomography

and 99Tm-HMPAO have also been described.

1. Neuropharmacological EVects of Hallucinogens

The first observation of an eVect of LSD on serotonergic transmission

was made in 1961 by Freedman (1961). Since, with the discovery of more than
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15 subtypes of 5-HT receptors, much more is known about the eVects of LSD on

central serotonergic receptors. LSD inhibits serotonergic cells in raphe nuclei

through a direct agonism on the presynaptic 5-HT1A site, thus reducing the firing

of these neurons and the release of serotonin. It also acts as a weak agonist on the

postsynaptic 5-HT1A site. LSD has high aYnity for all other 5-HT1 subtypes and

for 5-HT5A,5B (Matthes et al., 1993), 5-HT6 (Shen et al., 1993), and 5-HT7

receptors. However, the hallucinogenic eVect of LSD has been linked to its aYnity

for the 5-HT2 receptor, as this property is shared by substituted phenethylamine

hallucinogens, such as mescaline, DOI (1-(2,5-dimethoxy-4-iodophenyl-2-amino-

propane hydrochloride), DOB (4-bromo-2,5-dimethoxyphenylisopropylamine),

and DOM (2,5-dimethoxy-4-methylamphetamine) (Aghajanian, 1994), and other

indoleamine hallucinogens such as DMT (N,N-dimethyltryptamine) and psilocy-

bin. Phenethylamine hallucinogens are in general more selective for the 5-HT2

receptor than LSD. A strong correlation was described between eVective doses of
indoleamines (LSD) and phenethylamine hallucinogens and their respective po-

tency at the 5-HT2 receptor (Glennon and Titeler, 1984; Titeler et al., 1988),

suggesting that 5-HT2 receptors mediate the hallucinogenic eVects of these drugs.
Most data indicates a specific 5-HT2A mechanism, although a 5-HT2C eVect
cannot be ruled out. LSD has been reported to be an antagonist at the 5-HT2 site

by some investigators, and a full or partial agonist (Glennon, 1990) by others.

However, data demonstrates clearly a partial agonist eVect of LSD and DOI on

the 5-HT2A receptors in the piriform cortex in the rat (Marek and Aghajanian,

1996). This partial agonism eVect may explain why LSD can appear as an

antagonist, since it can decrease the eVect of the agonist, when coadministered

at high doses. Its dual eVect on 5-HT2 (stimulatory) and 5-HT1A (inhibitory) can

also explain how it may appear as an antagonist, since it can modulate its own

eVect. Psilocybin’s psychotomimetic eVects in humans were blocked by ketanserin,

a pure 5-HT2A antagonist, and risperidone (Vollenweider, 1998). As psilocybin is a

potent 5-HT2A and weak 5-HT1A agonist, this study demonstrates, in humans,

that 5-HT2A activation is psychotogenic. Another study by the same group

showed that this psychosis may be, at least partly, mediated by an increased

release of DA, as evidenced by a 20% decrease of [11C]racploride binding

after psilocybin administration in the striatum of human subjects (Vollenweider

et al., 1999).

2. Anatomical Substrates of Hallucinogens

5-HT2A receptors are present in high concentration in the olfactory bulb, hippo-

campus, frontal cortex, piriform,andentorhinal cortices,while 5-HT2Creceptors are

present in highest density in choroid plexus, anterior olfactory nucleus, piriform and

entorhinal cortices, striatum, amygdala, and Substantia Nigra (SN) (Hoyer et al.,

1986a,b; Martin and Humphrey, 1994). Hallucinogens have been shown to inte-

ract with 5-HT2 receptors in the locus coeruleus (LC) and the cortex in rats. In the
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LC, their eVects were reversed by 5-HT2 antagonists (Rasmussen and Aghajanian,

1986) and by various antipsychotics (Rasmussen and Aghajanian, 1988). The

reversal of eVect was correlated with the 5-HT2 binding aYnity of the antipsychotic

medications. In the piriform cortex in the rat it has been shown that serotonin

induces activation of GABAergic interneurons through the 5-HT2A receptor result-

ing in an enhancement of spontaneous inhibitory postsynaptic potentials in the

pyramidal cells (IPSPs) (Gellman and Aghajanian, 1993; Marek and Aghajanian,

1994; Sheldon andAghajanian, 1991). Aghajanian andMarek (1999) have shown that

5-HT, through 5-HT2A receptors, enhances spontaneous excitatory postsynaptic

potentials (EPSPs) in pyramidal cells of layer V of the neocortex, through a focal

action on apical dendrites, the main targets for excitatory corticocortical and

thalamocortical inputs. This activation leads to an increase in asynchronous

release of glutamate by pyramidal cells. This suggests a facilitation of glutamatergic

transmission in the cortex via 5-HT2A agonism, and may be consistent with the

data of Farber et al. (1998) showing that 5-HT2A agonism can prevent the vacuo-

lization related to NMDA neurotoxicity in rodent brain. However, this increase in

glutamate release can lead to an alteration in corticocortical and corticosubcortical

transmission.

In summary, these studies overall suggest a strong relationship between

5-HT2A stimulation and hallucinogen-induced psychosis. More similarities have

been described between hallucinogen-induced psychosis and positive symptoms

of schizophrenia as opposed to negative symptoms. Thus, one can conclude that

alterations in 5-HT2A function may mediate positive symptoms of schizophrenia,

possibly by aVecting directly or indirectly other transmitter systems such as DA

and glutamate. This is consistent with the therapeutic eYcacy of the new atypical

neuroleptics known to have a strong 5-HT2 antagonism.

D. 5-HT2A ANTAGONISM, CLOZAPINE, AND ATYPICALITY

Almost all antipsychotic drugs have appreciable aYnity for the 5-HT2

receptors. 5-HT2 receptors were initially termed ‘‘serotonergic component of

neuroleptic receptors’’ and it was proposed as early as 1978 that this component

may play an important role in the antipsychotic properties of neuroleptics

(Leysen et al., 1978). Nevertheless, as average clinical doses correlated better with

D2 aYnity rather than 5-HT2 aYnity, D2 receptor blockade was proposed to be

the principal mechanism of action of neuroleptic drugs (Creese et al., 1976;

Peroutka and Snyder, 1980; Seeman and Lee, 1975). Drugs such as clozapine,

chlorpromazine, thioridazine, and pipamperone had significantly higher aYnity

for 5-HT2 than for D2 receptors. However, they were usually prescribed at high

doses which induced D2 blockade, suggesting that 5-HT2 blockade was not the

principal mechanism of their antipsychotic action. The inverse was true for
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haloperidol and fluphenazine, which did not significantly block 5-HT2 receptors

at average clinical doses (Peroutka and Snyder, 1980).

More recently, the demonstration of the superior eYcacy of clozapine for

treatment of schizophrenia and of its low incidence of EPS has promoted a

renewed interest in the role of 5-HT2 antagonism in schizophrenia. Given the

lack of pharmacological specificity of clozapine, many theories have been pro-

posed to account for its particular clinical profile and have been extensively

reviewed elsewhere (Canton et al., 1990; Deutch et al., 1991; Lieberman, 1993;

Meltzer, 1991; Seeman, 1992). Most prominent hypotheses include a higher in vivo

selectivity of clozapine as compared to typical neuroleptics for (1) ‘‘corticolimbic’’

D2 receptors, as compared to ‘‘striatal’’ D2 receptors (Altar et al., 1986; Deutch

et al., 1992), possibly as an eVect of lower competition with endogenous DA in

corticolimbic regions than in striatal regions (Seeman, 1990); (2) D4 receptors

(Seeman, 1992; Van Tol et al., 1991); (3) 5-HT2 receptors (Altar et al., 1986;

Meltzer, 1989; Meltzer et al., 1989; Rasmussen and Aghajanian, 1988). While a

host of preclinical and clinical data support each of these assumptions, the

introduction of new compounds with a more narrow pharmacological profile is

indispensable to identify which of these putative mechanisms are critical for a

clozapine-like atypical profile. For example, supporting the first hypothesis is the

relative corticolimbic selectivity of benzamides with atypical profiles such as

sulpiride or remoxipride, compounds which are otherwise devoid of D4 and

5-HT2 selectivity as compared to D2. Compounds with high D4/D2 selectivity

other than clozapine or pure D4 receptor antagonists have not been shown to be

eVective antipsychotics (Bristow et al., 1997; Kramer et al., 1997; Sanyal and

VanTol, 1997). Many new compounds support the hypothesis that a relative

5-HT2 to D2 selectivity provide ‘‘atypical’’ properties, the first one extensively

tested being risperidone.

Following an extensive study of the in vitro receptor aYnity profile of typical

and putative atypical compounds, Meltzer et al. (1989) proposed that a ratio

of 5-HT2 pKi to D2 pKi > 1.19 (corresponding to a 25-fold selectivity for 5-HT2

as compared to D2) was desirable to achieve an atypical profile. Risperidone,

a compound not included in the original study of Meltzer et al. (1989) provides a

19-fold selectivity, slightly lower than the cutoV point originally proposed, but

still more selective than the typical chlorpromazine (sevenfold selectivity).

Placebo-controlled studies have demonstrated the antipsychotic eYcacy of ris-

peridone (Meco et al., 1989; Mesotten et al., 1989), and comparison studies with

haloperidol or perphenazine have shown superior antipsychotic properties of

risperidone (Claus et al., 1992; Hoyberg et al., 1993). The US–Canadian collabo-

ration study included 388 schizophrenic patients divided in six groups: placebo,

2, 6, 10, or 16 mg daily risperidone and haloperidol 20 mg daily for 8 weeks

(Marder and Meibach, 1994). Positive symptoms were significantly reduced as

compared to placebo in the 6-, 10-, 16-mg risperidone groups and in the 20-mg
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haloperidol group. Negative symptoms were significantly reduced only in the

6- and 16-mg risperidone group, but not in the 20-mg haloperidol group. EPS

were significantly higher than placebo in the 16-mg risperidone group and in the

20-mg haloperidol group.

Because haloperidol is significantly more selective toward D2 than 5-HT2

and because neither haloperidol nor risperidone have prominent antimuscarinic

properties, this study provided the best data to date to evaluate the impact of the

addition of a preferential 5-HT2 blockade to D2 blockade in the treatment of

schizophrenia. This study supports the hypothesis that a ‘‘balanced’’ 5-HT2/D2

blockade has superior eYcacy in the treatment of negative symptoms and a lower

EPS liability. However, EPS and negative symptoms can be correlated and

diYcult to distinguish clinically. The observation of a significant improvement

in negative symptoms despite a similar incidence of EPS in the 16-mg risperidone

group as compared to the 20-mg haloperidol group suggests that improvement in

negative symptoms is unrelated to decreased EPS. This study also indicates that

5-HT2 blockade does not aVect the incidence of EPS in the presence of complete

or near complete D2 blockade. Other atypical agents have been introduced:

olanzapine (Tollefson et al., 1997), quetiapine (Arvanitis and Miller, 1997), and

ziprasidone (Daniel et al., 1999; Keck et al., 1998; Seeger et al., 1995). These have

been demonstrated to be eVective in the treatment of positive and negative

symptoms in schizophrenia, with fewer side eVects than typical neuroleptics.

Most studies have shown a preferential response of negative symptoms to atypical

antipsychotics versus typicals (Kane et al., 1988; Tollefson et al., 1997). This,

however, was attributed by some investigators to an improvement in secondary

negative symptoms, that is those related to positive symptoms, depression, EPS,

or environmental deprivation, versus the primary negative symptoms otherwise

characterized by the deficit syndrome, resulting in controversial debates (Meltzer,

1995). Meta-analyses of available studies have been published showing generally

slight advantages of atypical antipsychotics in the treatment of negative symp-

toms (Leucht et al., 1999). Despite the traditional resistance to treatment of

cognitive impairments in schizophrenia, data related to atypical neuroleptics

suggest that these drugs may have relatively greater eYcacy than typical neuro-

leptics for treating these deficits (Meltzer and McGurk, 1999; Weinberger and

Gallhofer, 1997). The improvement in negative symptoms and cognition is

generally attributed to increased dopaminergic tone in the frontal cortex induc-

ed by 5-HT2A antagonism, and possibly 5-HT1A agonism for some compounds

(see below).

While these treatment studies clarify the therapeutic eVect of a combined

5-HT2 and D2 antagonism, they do not inform us about the potential benefit of

‘‘pure’’ 5-HT2 antagonists in the treatment of schizophrenia. Ritanserin, a potent

5-HT2A/2C antagonist, is not devoid of activity at theD2 receptor, but its 5-HT2/D2

selectivity is three times higher than risperidone. In predominantly type II
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schizophrenic patients, ritanserin augmentation of classical antipsychotics, as

compared to placebo augmentation, was found to induce a significant reduction

in BPRS mainly due to a decrease in negative symptoms such as anergia,

anxiety/depression (Gelders, 1989). In this trial, ritanserin was more potent than

placebo in reducing EPS, a finding which has been replicated (Bersani et al.,

1990; Miller et al., 1990). However, therapeutic eVects of ritanserin administered

alone remain controversial and need further study (Bleekers et al., 1990; Wiesel

et al., 1994). Pipamperone, a highly selective 5-HT2/D2 drug, has been char-

acterized by low EPS profile and antiautistic, disinhibiting, and resocializing

eVects (Gelders, 1989; Leysen et al., 1978). MDL 100907, a compound with high

aYnity for 5-HT2A receptors and negligible aYnity for D2 receptors, has shown

promising properties in preclinical studies predictive of atypical antipsychotic

properties (Sorensen et al., 1993). However, a therapeutic eVect ofMDL 100907 in

phase II trials in patients with schizophrenia has not been demonstrated yet,

despite many years of development so far, suggesting that pure 5-HT2A antagonism

alone may not be suYcient to have a clinically eVective antipsychotic agent. D2

blockade remains so far a necessary component for a therapeutic antipsychotic

eVect, as demonstrated by the fact that no known eVective antipsychotic lacks D2

antagonism. Clinical trials with fananserin, an antagonist at D4 and 5-HT2A

receptors, show lack of eYcacy, illustrating the notion that neither D4 or 5-HT2A

antagonism, in the absence of D2 antagonism, seem to be associated with clinical

improvement (TruYnet et al., 1999). In conclusion, antagonism at 5-HT2A when

added to D2 antagonism may contribute to the atypical profile of an antipsychotic,

that is, to better tolerability, fewer motor side eVects, and better eYcacy on negative

symptoms, but alone, may not confer antipsychotic properties.

E. ACTION OF ANTIPSYCHOTIC DRUGS AT OTHER SEROTONERGIC RECEPTORS

Most atypical antipsychotics have aYnities for multiple serotonergic receptors,

as summarized in Table II, the 5-HT1A, 5-HT2C, 5-HT6, and 5-HT7 deserve

further discussion, as 5-HT3 antagonists have been shown to lack antipsy-

chotic property (Newcomer et al., 1992). The actions of 17 antipsychotic agents

at the 5-HT1A were explored by (Newman-Tancredi et al., 1998). Clozapine,

ziprasidone, and quetiapine exhibited partial agonist activity and marked aYnity

at the human 5-HT1A receptors, similar to their aYnity at D2 receptors.

In contrast, risperidone and sertindole displayed low aYnity at 5-HT1A recep-

tors and behaved as ‘‘neutral’’ antagonists. Likewise the ‘‘typical’’ neuroleptics,

haloperidol, pimozide, raclopride, and chlorpromazine exhibited relatively low

aYnity and ‘‘neutral’’ antagonist activity. This study suggests that agonist activity

at 5-HT1A receptors may be beneficial, although it is clear from clinical experience

with drugs such as buspirone that 5-HT1A agonism without D2 blockade does not
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confer antipsychotic properties. Data has indicated that DA release in the frontal

cortex induced by clozapine and other atypical antipsychotics is mediated by

5-HT1A agonism (Rollema et al., 1997). This provides a mechanism for a potential

role of this receptor in alleviating negative symptoms and cognitive impairment, an

important property of atypical antipsychotics. Currently, new compounds with

strong aYnity for this receptor are under development and may shed further light

on its contribution to the treatment of schizophrenia.

Clozapine and olanzapine have high aYnities for the newly discovered

5-HT6 receptor (Kis < 20 nM), while clozapine and risperidone but not olanza-

pine displayed aYnities for the 5-HT7 receptor lower than 15 nM in cloned rat

cells (Roth et al., 1994). In addition, this study showed that several typical

antipsychotic agents (chlorpromazine and fluphenazine) had high aYnities for

both the 5-HT6 and 5-HT7 receptors with pimozide displaying the highest

aYnity of all the typical antipsychotic agents tested for the 5-HT7 receptor

(Ki ¼ 0.5 nM). This study seems to indicate that a high aYnity for 5-HT6 or

5-HT7 does not relate to the atypical properties of antipsychotics, as it is shared

by some of the typical antipsychotics, and is present in a minority of atypical

antipsychotics, unlike 5-HT2A antagonism.

Studies have shown that serotonin has opposing eVects via diVerent seroto-
nergic receptor subtypes. A study by Martin et al. (1997) showed that ritanserin,

a mixed 5-HT2A/2C antagonist, counteracts the inhibitory eVect of MDL

TABLE II

AFFINITIES OF SELECTED ANTIPSYCHOTIC DRUGS FOR 5-HT RECEPTORS

Drug 5-HT1A 5-HT1B 5-HT1D 5-HT2A 5-HT2C 5-HT3 5-HT6 5-HT7

Clozapine 132a,* 1200b 980b 4c 5c 69b 9.5d 6.3e

Olanzapine 1637a,* 1355b 800b 1.9c 2.8c 57b 10d 104e

Risperidone 292a 1325b 100b 0.39c 6.4c 2400d 1.39e

Quetiapine 250a,* 5400b 6220b 82c 1500c 170b 33d

Sertindole 433a 0.2c 0.51c

Ziprasidone 1.24a,* 0.25c 0.55c

Amperozide 3100c 20c 440c 1600d 549e

Remoxipride 11000c 23000c 5500c 5000e

Haloperidol 1910a 6950b 28c 1500c >1000b 6600d 263e

Aripiprazola 5.6 f 830 f 68 f 22 f 76 f 630 f 570 f 10.3 f

aValues taken from Newman-Tancredi et al. (1998), measured in cloned human receptors.
bBymaster et al. (1996), in rat brain (Bymaster et al., 1999).
cValues reported in Arnt et al. (1997), available from Lunbeck Pharmacological screening system

(Arnt, 1998).
dKohen et al. (1996), values obtained in human cloned receptors.
eRoth et al. (1994), in cloned rat receptors.
fShapiro et al. (2003).
*Indicates an agonist eVect at this receptor.
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100907 on the hyperlocomotion induced by MK-801 in a mouse model of

schizophrenia. In another elegant series of experiments (Martin et al., 1998), the

same group showed that the eVect of MDL 100907 was abolished by serotonin

depletion achieved by pCPA treatment, and restored by restitution of endogenous

serotonin. This finding suggests that activation of 5-HT2A receptors is stimulatory

while activation of 5-HT2C receptors is inhibitory. A first conclusion from this

study is that agonism at 5-HT2C receptor may be antipsychotic. Another conclu-

sion is that 5-HT2C antagonist eVects may depend on increased serotonergic tone.

This would suggest that a response to atypical antipsychotics may be observed in

patients with high serotonergic transmission. This conclusion is in agreement with

clinical studies showing that a high serotonin tone, reflected by a low pretreatment

CSF HVA/5HIAA ratio, predicts preferential response to clozapine (see refer-

ences in Martin et al., 1998). According to this line of thinking, agonism at the

presynaptic 5-HT1A receptor would result in a decreased serotonergic tone and

would diminish the beneficial eVects of 5-HT2A antagonists, while therapeutic

strategies aiming at increasing serotonergic tone, would be expected to enhance

the eYcacy of 5-HT2A antagonists. An alternative interpretation of this data is that

atypical antipsychotics may benefit most those patients without serotonergic

deficits. Severe deficits in serotonergic function may underlie treatment resistance.

IV. 5-HT–DA Interactions Relevant to Schizophrenia

A. VTA DA NEURONS ACTIVITY

Activity of DA neurons is inhibited by raphe stimulation. This eVect ismediated

by serotonin (Dray et al., 1978; Fibiger and Miller, 1977) and by local dendritic

release of DA (Nedergaard et al., 1988; Williams and Davies, 1983) promoting D2

autoreceptor activation. In addition, this inhibitory eVect of serotonin on Ventral

Tegmental Area (VTA) and SN neurons may be mediated by 5-HT2 receptors:

acute systemic administration of the 5-HT2 antagonist ritanserin increased the burst

firing and firing rate of VTA and SN neurons (Ugedo et al., 1989). This eVect
required the presence of intact endogenous 5-HT, as it was not observed after pCPA

treatment. Thus, VTA and SN are under tonic inhibition by 5-HT neurons,

possibly via DA dendritic release mediated by 5-HT2 receptors. Acute administra-

tion of ritanserin increased DA concentration in the extracellular fluid in the

accumbens measured with microdialysis (Devaud and Hollingsworth, 1991). Since

extracellular DA concentration is thought to depend more on the tonic than the

phasic release ofDA (Grace, 1991), this observation suggests that 5-HT2 antagonism

increases the tonic release of DA in the terminal fields. Furthermore, VTA neurons

are more sensitive than SN neurons to the disinhibiting eVect of 5-HT2 antagonists.
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Low doses of ritanserin or ICS 169,369, a highly selective and potent 5-HT2

antagonist, increase A10 firing rate but do not aVect A9 cells. At higher doses,

this selective eVect of 5-HT2 antagonists on VTA neurons is lost (Goldstein et al.,

1989).

In addition to interactions at the level of the VTA, 5-HT2 receptors antago-

nism promotes DA release in the terminal fields of the VTA projection. In the

prefrontal cortex, local administration of the 5-HT2A antagonists clozapine,

ritanserin, ICS 205,930, amperozide, and MDL 100907 increase DA eZux

measured with microdialysis (Hertel et al., 1996). Together, these observations

suggest that 5-HT2 blockade might enhance DA activity at the level of the VTA

and the DA terminals.

Activation of VTA DA systems by 5-HT2 blockade also prevents dysregula-

tion of VTA DA functions observed following reductions in prefrontal cortex

glutamatergic input. Local and reversible cooling of the prefrontal cortex alters

the pattern of activity of VTA cells, from their normal, burst firing activity to a

regular ‘‘pacemaker’’ pattern (Svensson and Tung, 1989). This alteration of firing

activity has been proposed to mediate some of the negative symptoms associated

with hypofrontality in schizophrenia such as poor drive and reward. Administra-

tion of the NMDA antagonist phencyclidine, known to induce both positive and

negative symptoms in humans (Allen and Young, 1978; Snyder, 1980), produces

the same eVects as hypofrontality on VTA neurons, that is a reduction in burst

activity (Svensson, 1993). Ritanserin and amperozide, both potent 5-HT2 block-

ers, protect VTA DA cells from deactivation induced by cooling of prefrontal

cortex or phencyclidine administration (GrenhoV et al., 1990; Svensson, 1993;

Svensson et al., 1989, 1995). These observations are also compatible with a

stimulating eVect of 5-HT2 antagonists on DA neuronal activity.

In summary, 5-HT2 antagonists might reduce negative symptoms in schizo-

phrenia through activation of midbrain DA projections to the limbic system and

cerebral cortex. Since VTA DA neurons projecting to the accumbens are

involved in drive and reward (Bozarth, 1986), it has been proposed that activa-

tion of VTA neurons by 5-HT2 antagonists might provide a basis for their

thymosthenic action and the improvement in negative symptoms (Ugedo et al.,

1989).

Behavioral studies performed with raphe lesions or pCPA treatment have

consistently demonstrated an enhancement of amphetamine eVects after 5-HT

depletion. However, more recently, electrophysiological and microdialysis studies

have demonstrated that selective 5-HT2 blockade decreases amphetamine eVects
on locomotion. MDL 100907, a selective 5-HT2A antagonist, blocks amphet-

amine stimulated locomotion at a dose that does not aVect spontaneous locomo-

tion (Sorensen et al., 1993). While having no eVect on basal DA extracellular

concentration, 5-HT2 antagonists such as MDL 100907, amperozide, and

ketanserin decrease MDMA-mediated DA release measured by microdialysis
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(Nash, 1990; Schmidt et al., 1994). Electrophysiological data support the fact that

5-HT2 blockade decreases DA mediated amphetamine eVects by interfering with
regulation of DA synthesis.

D-Amphetamine produces a marked inhibition of DA activity as recorded by

single-cell recording. This inhibition is due to neural feedback loops in the SN

and to the stimulation of somatodendritic receptors following DA release in VTA

(Bunney and Aghajanian, 1976; Wang, 1981). �-Methyl-paratyrosine (�MPT),

an inhibitor of tyrosine hydroxylase, the rate-limiting step in DA synthesis,

attenuates amphetamine-induced DA release (Butcher et al., 1988) and blocks

amphetamine-induced slowing of cell firing (Bunney and Aghajanian, 1976).

Thus, DA synthesis plays a major role in the eVect of amphetamine on DA

neurons. Interestingly, the selective 5-HT2 antagonists ritanserin and MDL

28,133A also significantly suppress the eVect of amphetamine on VTA neurons.

This eVect was, however, restored when L-dopa was coadministered with a 5-HT2

antagonist. Since L-dopa enters the DA synthetic pathway beyond the point of

synthesis regulation (tyrosine hydroxylase), it was proposed that 5-HT regulates

tyrosine hydroxylase activity via 5-HT2 receptors. While the 5-HT2 agonist DOI

hydrochloride does not appear to increase DA synthesis when given alone, it

greatly potentiates amphetamine-induced increase in DA synthesis (Huang and

Nichols, 1993) and amphetamine-induced DA release (Ichikawa and Meltzer,

1995). These data suggest that 5-HT2 stimulation may be needed to maintain the

increase in phasic DA neuronal activity, as observed after administration of

stimulants or during stress. Thus, in this model, 5-HT2 blockade would decrease

DA phasic activity (a tyrosine hydroxylase dependent process) without aVecting
tonic basal DA activity (Schmidt et al., 1993). Since positive symptoms are

associated with increased DA release in schizophrenia (Laruelle et al., 1996),

these preclinical observations suggest that 5-HT2 antagonism might have a

beneficial eVect on positive symptoms.

V. Discussions

The hypothesis that schizophrenia may be associated with decreased tonic

DA activity and increased phasic activity (Grace, 1993) provides a framework in

which the eVects of a balanced 5-HT2/D2 antagonism could be conceptualized.

The tonic mode, or baseline mode, plays a role in motivation and drive, and

appears to be regulated by a corticostriatal and cortico-VTA glutamatergic input.

In contrast, the phasic mode is responsible for a rapid increase of DA in the

synapse, in response to emotions or stress. One function of the tonic baseline

activity is to regulate the sensitivity of the system to the phasic release of DA.

A decrease in the tonic activity would result in an increased sensitivity of the
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phasic activity. In schizophrenia, cortical lesions may induce a hypoactivity of the

corticostriatal and corticolimbic glutamatergic projections, leading to a decrease

in the tonic release of DA, which may be associated with negative symptoms such

as lack of drive and motivation. This decreased tonic activity in turn induces a

state of hypersensitivity of the DA system to the phasic release, which can be the

substrate of positive symptoms (Grace, 1993).

Examination of 5-HT-DA interactions mediated by the 5-HT2A receptors

lead to the following suggestion regarding the mechanism of action of ‘‘balanced’’

5-HT2A/D2 agents. It is suggested that 5-HT2A blockade acts as a buVer to

narrow the range of DA activity in the VTA projection territories, elevating the

baseline activity (thus reducing negative symptoms) and decreasing the amplitude

of the phasic reactivity (thus reducing positive symptoms). Decreased tonic

activity of VTA is observed after inactivation of the frontal cortex or administra-

tion of NMDA antagonists. 5-HT2A antagonists restore normal VTA DA activity

after inactivation of the frontal cortex, and this might account for improvement

in negative symptoms. Obviously, if stimulation of mesocorticolimbic DA base-

line activity is the mechanism mediating the improvement in negative symptoms

attributed to 5-HT2A antagonism, this eVect would be lost in the presence of a

complete blockade of D2 receptors (Kapur and Remington, 1996). Thus, a mo-

derate rather than a complete D2 receptors occupancy might be desirable to

permit 5-HT2A antagonism to exert its therapeutic action on the negative

symptoms.

On the other hand, positive symptoms could be reduced by attenuation of DA

phasic activity via blockade of 5-HT2A-stimulated tyrosine hydroxylase activity.

If increased DA phasic activity is at least partially dependent on 5-HT2A-stimulated

tyrosine hydroxylase activity, 5-HT2 blockade might reduce the tyrosine hydroxy-

lase dependent DA phasic release responsible for the positive symptoms of schizo-

phrenia. One study seems to contradict this hypothesis so far, where clozapine and

risperidone treatment did not normalize the amphetamine-induced DA release in

patients with schizophrenia compared to controls (Breier et al., 1999). However,

the eVect of D2 blockade may have counfounded the interpretation of the eVect of
the 5-HT2 antagonism in this study. Revisiting this issue after treatment with a

pure 5-HT2 antagonist such as MDL 100907 is warranted.

So far, 5-HT2A antagonists show modest eYcacy as stand-alone treatments for

schizophrenia. However, they do not appear to be as eVective in treating schizo-

phrenia as haloperidol. In addition, it is now clear that 5-HT2A antagonists do not

increase the D2 receptor blocking threshold associated with emergence of EPS

since the threshold of D2 receptor occupancy associated with EPS is not markedly

diVerent between these drugs and drugs devoid of 5-HT2A antagonism (Kapur

et al., 1995, 1998; Knable et al., 1997; Nyberg et al., 1993). The benefit derived from

the combination of 5-HT2A antagonism with a partial D2 blockade may relate to

the following two factors: (1) 5-HT2A antagonism increases DA release in the
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cortex, this eVect might lead to an improvement in negative symptoms and

cognition, possibly through an increased stimulation of the D1 receptor. This

eVect may be potentiated by agonism at the 5-HT1A receptor. (2) 5-HT2A antago-

nists may decrease the tyrosine hydroxylase dependent, or phasic, DA release in

subcortical areas and improve positive symptoms, 5-HT2A antagonists may be

even more beneficial in presence of high serotonergic tone, since increased stimu-

lation of the 5-HT2A receptors, because of their location on apical dendrites of

most pyramidal cells in the cortex, may lead to a dysregulation of glutamatergic

transmission and corticocortical as well as corticosubcortical transmission. As we

understand better the role of the 5-HT2A receptors in the treatment of schizophre-

nia, much remains to be learned about the other receptors, although the evidence

so far does not suggest they play a role as prominent as the 5-HT2A.More research

is needed to further clarify the role of these receptors.

In conclusion, results of postmortem studies indicate possible alteration

of 5-HT transmission in the prefrontal cortex of patients with schizophrenia.

Decreased 5-HT transporter density, increased 5-HT1A receptors, and decreased

5-HT2A receptors have all been suggested by postmortem studies in schizophre-

nia, but these findings have not been consistently replicated and have not yielded

conclusive evidence so far. On the other hand, stimulation of 5-HT2A receptors is

psychotogenic, although LSD-induced psychosis is an imperfect model of the

illness. 5-HT2A receptor blockade is a useful augmentation or modulation of D2

receptor blockade, but 5-HT2A antagonism alone has not yet demonstrated

incisive antipsychotic properties. If 5-HT2A blockade per se does not produce

antipsychotic eVects in patients with schizophrenia, it would support the argu-

ment that these symptoms are not primarily due to hyperstimulation of 5-HT2A

receptors. The potential of pharmacological interventions targeted at other

5-HT receptors (such as 5-HT1A agonism) remains to be clarified. Overall, a

comprehensive model of alterations of 5-HT transmission in schizophrenia has

not yet emerged and additional research is needed, not only to clarify possible

alterations of 5-HT systems in schizophrenia but also to establish their signifi-

cance in terms of modulation of other transmitters systems (DA and glutamate),

role in symptomatology, and treatment opportunity.
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Hrdina, P. D., Demeter, E., Vu, T. B., Sótónyi, P., and Palkovits, M. (1993). 5-HT uptake sites and

5-HT2 receptors in brain of antidepressant-free suicide victims/depressives: Increase in 5-HT2

sites in cortex amd amygdala. Brain Res. 614, 37–44.

Huang, X., and Nichols, D. E. (1993). 5HT2 mediated potentiation of dopamine synthesis and

central serotonergic deficits. Eur. J. Pharmacol. 238, 291–296.

Huang, Y., Hwang, D. R., Narendran, R., Sudo, Y., Chatterjee, R., Bae, S. A., Mawlawi, O.,

Kegeles, L. S., Wilson, A. A., Kung, H. F., and Laruelle, M. (2002). Comparative evaluation in

nonhuman primates of five PET radiotracers for imaging the serotonin transporters: [11C]McN

5652, [11C]ADAM, [11C]DASB, [11C]DAPA, and [11C]AFM. J. Cereb. Blood Flow Metab. 22,

1377–1398.

ALTERATIONS OF SEROTONIN TRANSMISSION IN SCHIZOPHRENIA 157



Ichikawa, J., and Meltzer, H. Y. (1995). D. O. I., a 5-HT2A/2C receptor agonist, potentiates

amphetamine-induced dopamine release in rat striatum. Brain Res. 698, 204–208.

Joyce, J. N., Shane, A., Lexow, N., Winokur, A., Casanova, M. F., and Kleinman, J. E. (1993).

Serotonin uptake sites and serotonin receptors are altered in the limbic system of schizophrenics.

Neuropsychopharmacology 8, 315–336.

Kane, J., Honigfeld, G., Singer, J., Meltzer, H. Y., and the Clozaril Collaborative Study Group

(1988). Clozapine for the treatment-resistant schizophrenic. Arch. Gen. Psychiatry 45, 789–796.

Kapur, S., and Remington, G. (1996). Serotonin-dopamine interaction and its relevance to

schizophrenia. Am. J. Psychiatry 153, 466–476[Review].

Kapur, S., Remington, G., Zipursky, R. B., Wilson, A. A., and Houle, S. (1995). The D2 dopamine

receptor occupancy of risperidone and its relationship to extrapyramidal symptoms: A PET

study. Life Sci. 57, L103–L107.

Kapur, S., Zipursky, R. B., Remington, G., Jones, C., DaSilva, J., Wilson, A. A., and Houle, S.

(1998). 5-HT2 and D2 receptor occupancy of olanzapine in schizophrenia: A PET investigation.

Am. J. Psychiatry 155, 921–928.

Keck, P., Jr., BuVenstein, A., Ferguson, J., Feighner, J., JaVe, W., Harrigan, E. P., andMorrissey, M. R.

(1998). Ziprasidone 40 and 120 mg/day in the acute exacerbation of schizophrenia and

schizoaVective disorder: A 4-week placebo-controlled trial. Psychopharmacology (Berl.) 140, 173–184.

Kia, H. K., Miquel, M. C., Brisorgueil, M. J., Daval, G., Riad, M., El Mestikawy, S., Hamon, M.,

and Verge, D. (1996). Immunocytochemical localization of serotonin1A receptors in the rat

central nervous system. J. Comp. Neurol. 365, 289–305.

Knable, M. B., Heinz, A., Raedler, T., and Weinberger, D. R. (1997). Extrapyramidal side eVects

with risperidone and haloperidol at comparable D2 receptor occupancy levels. Psychiatr. Res.

Neuroimag. 75, 91–101.

Kohen, R., Metcalf, M. A., Khan, N., Druck, T., Huebner, K., Lachowicz, J. E., Meltzer, H. Y.,

Sibley, D. R., Roth, B. L., andHamblin,M.W. (1996). Cloning, characterization, and chromosomal

localization of a human 5-HT6 serotonin receptor. J. Neurochem. 66, 47–56.

Kramer, M. S., Last, B., Getson, A., and Reines, S. A. (1997). The eVects of a selective D4 dopamine

receptor antagonist (L-745,870) in acutely psychotic inpatients with schizophrenia. D4

Dopamine Antagonist Group. Arch. Gen. Psychiatry 54, 567–572.

Langs, R. J., and Barr, H. L. (1968). Lysergic acid diethylamide (LSD-25) and schizophrenic

reactions. J. Nerv. Ment. Dis. 147, 163–172.

Laruelle, M., Abi-Dargham, A., Casanova, M. F., Toti, R., Weinberger, D. R., and Kleinman, J. E.

(1993). Selective abnormalities of prefrontal serotonergic receptors in schizophrenia:

A postmortem study. Arch. Gen. Psychiatry 50, 810–818.

Laruelle, M., Abi-Dargham, A., van Dyck, C. H., Gil, R., D’Souza, C. D., Erdos, J., McCance, E.,

Rosenblatt, W., Fingado, C., Zoghbi, S. S., Baldwin, R. M., Seibyl, J. P., et al. (1996). Single

photon emission computerized tomography imaging of amphetamine-induced dopamine release

in drug-free schizophrenic subjects. Proc. Natl. Acad. Sci. USA 93, 9235–9240.

Laruelle, M., Abi-Dargham, A., van Dyck, C., Gil, R., D’Souza, D. C., Krystal, J., Seibyl, J.,

Baldwin, R., and Innis, R. (2000). Dopamine and serotonin transporters in patients with

schizophrenia: An imaging study with [123I]beta-CIT. Biol. Psychiatry 47, 371–379.

Lauer, J., Inskip, W., Bernshon, J., and Zeller, E. (1958). Observations on schizophrenic patients

after iproniazid and tryptophan. Arch. Neurol. Psychiatr. 80, 122.

Lawrence, J. A., Olverman, H. J., Shirakawa, K., Kelly, J. S., and Butcher, S. P. (1993). Binding of

5-HT1A receptor and 5-HT transporter ligands in rat cortex and hippocampus following

cholinergic and serotonergic lesions. Brain Res. 612, 326–329.

Leucht, S., Pitschel-Walz, G., Abraham, D., and Kissling, W. (1999). EYcacy and extrapyramidal

side-eVects of the new antipsychotics olanzapine, quetiapine, risperidone, and sertindole compared

158 ANISSA ABI-DARGHAM



to conventional antipsychotics and placebo. A meta-analysis of randomized controlled trials.

Schizophr. Res. 35, 51–68.

Lewis, R., Kapur, S., Jones, C., DaSilva, J., Poy, P., Brown, G., Wilson, A., Houle, S., and

Zipursky, R. (1997). PET study of 5-HT2 receptors density in schizophrenia. Biol. Psychiatry

41, 63S.

Lewis, R., Kapur, S., Jones, C., DaSilva, J., Brown, G. M., Wilson, A. A., Houle, S., and Zipursky,

R. B. (1999). Serotonin 5-HT2 receptors in schizophrenia: A PET study using [18F]setoperone

in neuroleptic-naive patients and normal subjects. Am. J. Psychiatry 156, 72–78.

Leysen, J., Niemegeers, C., Tollenaere, J., and Laduron, P. (1978). Serotonergic component of

neuroleptic receptors. Nature 272, 168–171.

Leysen, J. E. (1990). Gaps and peculiarities in 5-HT2 receptor studies. Neuropsychopharmacology 3,

361–369.

Leysen, J. E., Niemeggers, J. E., Van Nueten, J. M., and Laduron, P. M. (1982). [3H ]Ketanserin

(R 41 468), a selective 3H-ligand for serotonin-2 receptor binding sites: Binding properties, brain

distribution and functional role. Mol. Pharmacol. 21, 301–314.

Leysen, J. E., Van Gompel, P., de ChaVoy de Courcelles, D., and Niemegeers, C. J. E. (1987).

Opposite regulation of serotonin S2 and dopamine D2 receptors in rat brain following chronic

receptor blockade. J. Recep. Res. 7, 223–239.

Lidow, M. S., Goldman-Rakic, P. S., Gallager, D. W., and Rakic, P. (1989). Quantitative

autoradiographic mapping of serotonin 5-HT1 and 5-HT2 receptors and uptake sites in the

neocortex of the rhesus monkey. J. Comp. Neurol. 280, 27–42.

Lieberman, J. A. (1993). Understanding the mechanism of action of atypical antipsychotic drugs.

Br. J. Psychiatry 163, 7–18.

Lieberman, J. A., Mailman, R. B., Duncan, G., Sikich, L., Chakos, M., Nichols, D. E., and Kraus,

J. E. (1998). Serotonergic basis of antipsychotic drug eVects in schizophrenia. Biol. Psychiatry 44,

1099–1117.

Lowther, S., De Paermentier, F., Crompton, R., Katona, C. L. E., and Horton, R. W. (1994). Brain

5-HT2 receptors in suicide victims: Violence of death, depression and eVects of antidepressant
treatment. Brain Res. 642, 281–289.

Lowther, S., DePaermentier, F., Cheetham, S. C., Crompton, M. R., Katona, C. L. E., and Horton,

R. W. (1997). 5-HT1A receptor binding sites in post-mortem brain samples from depressed

suicides and controls. J. AVect. Disord. 42, 199–207.
Mann, J. J., Stanley, M., Mc Bride, P. A., and Mc Ewen, B. S. (1986). Increased serotonin2 and beta

receptor in the frontal cortices of suicide victims. Arch. Gen. Psychiatry 43, 954–959.

Marder, S. R., and Meibach, R. C. (1994). Risperidone in the treatment of schizophrenia.

Am. J. Psychiatry 151, 825–835.

Marek, G. J., and Aghajanian, G. K. (1994). Excitation of interneurons in piriform cortex by

5-hydroxytryptamine: Blockade by MDL 100,907, a highly selective 5-HT(2A) receptor

antagonist. Eur. J. Pharmacol. 259, 137–141.

Marek, G. J., and Aghajanian, G. K. (1996). LSD and the phenethylamine hallucinogen DOI are

potent partial agonists at 5-HT2A receptors on interneurons in rat piriform cortex. J. Pharmacol.

Exp. Ther. 278, 1373–1382.

Martin, G., and Humphrey, P. (1994). Classification review: Receptors for 5-hydroxytryptamine:

Current perspectives on classification and nomenclature. Neuropharmacology 33, 261–273.

Martin, P., Waters, N., Carlsson, A., and Carlsson, M. L. (1997). The apparent antipsychotic action of

the 5-HT2a receptor antagonist M100907 in a mouse model of schizophrenia is counteracted by

ritanserin—Rapid communication. J. Neural. Transm. 104, 561–564.

Martin, P., Waters, N., Schmidt, C. J., Carlsson, A., and Carlsson, M. L. (1998). Rodent data and

general hypothesis: Antipsychotic action exerted through 5-HT2A receptor antagonism is

dependent on increased serotonergic tone. J. Neural. Transm. 105, 365–396.

ALTERATIONS OF SEROTONIN TRANSMISSION IN SCHIZOPHRENIA 159



Matsubara, S., Arora, R. C., and Meltzer, H. Y. (1991). Serotonergic measures in suicide brain:

5-HT1A binding sites in frontal cortex of suicide victims. J. Neural Transm. Gen. Sect. 85, 181–194.

Matthes, H., Boschert, U., Amlaiky, N., Grailhe, R., Plassat, J., Muscatelli, F., Mattei, M., and Hen, R.

(1993). Mouse 5-hydroxytryptamine5A and 5-hydroxytryptamine5B receptors define a new

family of serotonin receptors: Cloning, functional expression and chromosomal localization. Mol.

Pharmacol. 43, 313–319.

Meco, G., Bedini, L., Bonifati, V., and Sonsini, U. (1989). Risperidone in the treatment of chronic

schizophrenia with tardive dyskinesia. Curr. Ther. Res. 46, 876–883.

Meltzer, C. C., Price, J. C., Mathis, C. A., Greer, P. J., Cantwell, M. N., Houck, P. R., Mulsant,

B. H., Ben-Eliezer, D., Lopresti, B., DeKosky, S. T., and Reynolds, C. F., III (1999). PET

imaging of serotonin type 2A receptors in late-life neuropsychiatric disorders. Am. J. Psychiatry

156, 1871–1878.

Meltzer, H. (1989). Clinical studies on the mechanism of action of clozapine: The dopamine-

serotonin hypothesis of schizophrenia. Psychopharmacology 99, S18–S27.

Meltzer, H., Matsubara, S., and Lee, J. (1989). Classification of typical and atypical antipsychotic

drugs on the basis of dopamine D-1, D-2, and serotonin2 pki values. J. Pharmacol. Exp. Ther. 251,

238–246.

Meltzer, H. Y. (1991). The mechanism of action of novel antipsychotic drugs. Schizophr. Bull. 17,

263–286.

Meltzer, H. Y. (1995). The role of serotonin in schizophrenia and the place of serotonin-dopamine

antagonist antipsychotics. J. Clin. Psychopharmacol. 15, S2–S3.

Meltzer, H. Y., and McGurk, S. R. (1999). The eVects of clozapine, risperidone, and olanzapine on

cognitive function in schizophrenia [In Process Citation]. Schizophr. Bull. 25, 233–255.

Mesotten, F., Suy, E., Pietquin, M., Burton, P., Heylen, S., and Gelders, S. (1989). Therapeutic eVect

and safety of increasing doses of risperidone (R 64766) in psychotic patients. Psychopharmacology

99, 445–449.

Meyer, J. H., Wilson, A. A., Ginovart, N., Goulding, V., Hussey, D., Hood, K., and Houle, S. (2001).

Occupancy of serotonin transporters by paroxetine and citalopram during treatment of

depression: A [(11)C]DASB PET imaging study. Am. J. Psychiatry 158, 1843–1849.

Miller, C. H., Fleischhacker, W. W., Ehrman, H., and Kane, J. M. (1990). Treatment of neuroleptic

induced akathisisa with the 5-HT2 antagonist ritanserin. Psychopharmacol. Bull. 26, 373–376.

Mita, T., Hanada, S., Nishino, N., Kuno, T., Nakai, H., Yamadori, T., Mizoi, Y., and Tanaka, C.

(1986). Decreased serotonin S2 and increased dopamine D2 receptors in chronic schizophrenics.

Biol. Psychiatry 21, 1407–1414.

Morand, C., Young, S., and Ervin, F. (1983). Clinical response of agressive schizophrenics to oral

tryptophan. Biol. Psychiatry 18, 575–578.

Murphy, H., Wittkower, E., Fried, J., and Ellenberger, H. (1963). Cross-cultural survey of

schizophrenic symptomatology. Int. J. Soc. Psychiatry 9, 237–249.

Nash, J. F. (1990). Ketanserin pretreatment attenuates MDMA-induced dopamine release in the

striatum as measured by in vivo microdialysis. Life Sci. 47, 2401–2408.

Naylor, L., Dean, B., Opeskin, K., Pavey, G., Hill, C., Keks, N., and Copolov, D. (1996). Changes in

the serotonin transporter in the hippocampus of subjects with schizophrenia identified using

[3H]paroxetine. J. Neural. Transm. Gen. Sect. 103, 749–757.

Nedergaard, S., Bolam, J. P., and Greenfield, S. A. (1988). Facilitation of a dendritic calcium

conductance by 5-hydroxytryptamine in the substantia nigra. Nature 333, 174–176.

Newcomer, J. W., Faustman, W. O., Zipursky, R. B., and Csernansky, J. G. (1992). Zacopride in

schizophrenia: A single-blind serotonin type 3 antagonist trial. Arch. Gen. Psychiatry 49, 751.

Newman-Tancredi, A., Gavaudan, S., Conte, C., Chaput, C., Touzard, M., Verriele, L., Audinot, V.,

and Millan, M. J. (1998). Agonist and antagonist actions of antipsychotic agents at 5-HT1A

receptors: A [35S]GTPgammaS binding study. Eur. J. Pharmacol. 355, 245–256.

160 ANISSA ABI-DARGHAM



Ngan, E. T., Yatham, L. N., Ruth, T. J., and Liddle, P. F. (2000). Decreased serotonin 2A receptor

densities in neuroleptic-naive patients with schizophrenia: A PET study using [(18)F]setoperone.

Am. J. Psychiatry 157, 1016–1018.

Nyberg, S., Farde, L., Eriksson, L., Halldin, C., and Eriksson, B. (1993). 5-HT2 and D2 dopamine

receptor occupancy in the living human brain. A PET study with risperidone. Psychopharmacology

110, 265–672.

Ohuoha, D. C., Hyde, T. M., and Kleinman, J. E. (1993). The role of serotonin in schizophrenia:

An overview of the nomenclature, distribution and alterations of serotonin receptors in the

central nervous system. Psychopharmacology 112, S5–S15[Review].

Okubo, Y., Suhara, T., Suzuki, K., Kobayashi, K., Inoue, O., Terasaki, O., Someya, Y., Sassa, T.,

Sudo, Y., Matsushima, E., Iyo, M., Tateno, Y., et al. (2000). Serotonin 5-HT2 receptors in

schizophrenic patients studied by positron emission tomography. Life Sci. 66, 2455–2464.

Owen, F., Cross, A., Crow, T., Deakin, J., Ferrier, I., Lofthouse, R., and Poulter, M. (1983). Brain

5-HT2 receptors and suicide. Lancet 2, 1256.

Owen, F., Chambers, D. R., Cooper, S. J., Crow, T. J., Johnson, J. A., Lofthouse, R., and Poulter,

M. (1986). Serotonergic mechanisms in brain of suicide victims. Brain Res. 362, 185–188.

Peroutka, S. J., and Snyder, S. H. (1979). Multiple serotonin receptors: DiVerential binding of [3H]

5-hydroxytryptamine, [3H]lysergic acid diethylamide and [3H]spiperidol. Mol. Pharmacol. 16,

687–699.

Peroutka, S. J., and Snyder, S. S. (1980). Relationship of neuroleptics drugs eVects at brain dopamine,

serotonin, @-adrenergic and histamine receptors to clinical potency. Am. J. Psychiatry 137,

1518–1522.

Pollin, W., Cardon, P. V., and Kety, S. S. (1961). EVects of amino acid feedings in schizophrenic

patients treated with iproniazid. Science 133, 104–105.

Pranzatelli, M. R., Durkin, M. M., and Barkai, A. I. (1994). Quantitative autoradiography of

5-hydroxytryptamine1A binding sites in rats with chronic neonatal 5,7-dihydroxytryptamine

lesions. Dev. Brain Res. 80, 1–6.

Rasmussen, K., and Aghajanian, G. (1986). EVects of hallucinogens on spontaneous and sensory-

evoked locus coeruleus unit activity in the rat: Reversal by selective 5-HT2 antagonists. Brain Res.

385, 395–400.

Rasmussen, K., and Aghajanian, G. K. (1988). Potency of antipsychotics. Neuropsychopharmacology 1,

101–107.

Reynolds, G. P., Rossor, M. N., and Ivesen, L. L. (1983). Preliminary studies of human cortical

5-HT2 receptors and their involvement in schizophrenia and neuroleptic drug action. J. Neural.

Transm. Suppl. 18, 273–277.

Rinkel, M., Hyde, R., Solomon, H., and Hoagland, H. (1955). Experimental psychiatry II:

Clinical and physio-chemical observations in experimental psychosis. Am. J. Psychiatry 111,

881–895.

Rollema, H., Lu, Y., Schmidt, A. W., and Zorn, S. H. (1997). Clozapine increases dopamine release

in prefrontal cortex by 5-HT1A receptor activation. Eur. J. Pharmacol. 338, R3–R5.

Roth, B. L., Craigo, S. C., Choudhary, M. S., Uluer, A., Monsma, F., Jr., Shen, Y., Meltzer, H. Y., and

Sibley, D. R. (1994). Binding of typical and atypical antipsychotic agents to 5-hydroxytryptamine-6

and 5-hydroxytryptamine-7 receptors. J. Pharmacol. Exp. Ther. 268, 1403–1410.

Sanyal, S., and VanTol, H. H. M. (1997). Review the role of dopamine D4 receptors in schizophrenia

and antipsychotic action. J. Psychiatr. Res. 31, 219–232.

Schmidt, C. J., Kehne, J. H., Carr, A. A., Fadayel, G. M., Humphreys, T. M., Kettler, H. J.,

McCloskey, T. C., Padich, R. A., Taylor, V. L., and Sorensen, S. M. (1993). Contribution of

serotonin neurotoxins to understanding psychiatric disorders: The role of 5-HT2 receptors in

schizophrenia and antipsychotic activity. Int. Clin. Psychopharmacol. 8, 25–32.

ALTERATIONS OF SEROTONIN TRANSMISSION IN SCHIZOPHRENIA 161



Schmidt, C. J., Sullivan, C. K., and Fadayel, G. M. (1994). Blockade of striatal 5-hydroxytryptamine

(2) receptors reduces the increase in extracellular concentrations of dopamine produced by the

amphetamine analogue 3,4-methylenedioxymethamphetamine. J. Neurochem. 62, 1382–1389.

Seeger, T. F., Seymour, P. A., Schmidt, A. W., Zorn, S. H., Schulz, D. W., Lebel, L. A., McLean, S.,

Guanowsky, V., Howard, H. R., Lowe, J. A., III, et al. (1995). Ziprasidone (CP-88,059): A new

antipsychotic with combined dopamine and serotonin receptor antagonist activity. J. Pharmacol.

Exp. Ther. 275, 101–113.

Seeman, P. (1990). Atypical neuroleptics: Role of multiple receptors, endogenous dopamine, and

receptor linkage. Acta Psychiatr. Scand. 82, 14–20.

Seeman, P. (1992). Dopamine receptor sequences. Therapeutic levels of neuroleptics occupy D2

receptors, clozapine occupies D4. Neuropsychopharmacology 7, 261–284.

Seeman, P., and Lee, T. (1975). Antipsychotic drugs: Direct correlation between clinical potency and

presynaptic action on dopamine neurons. Science 188, 1217–1219.

Shapiro, L. A., OVord, S. J., and Ordway, G. A. (1995). The eVect of chronic treatment with a novel

aryl-piperazine antipsychotic on monoamine receptors in rat brain. Brain Res. 677, 250–256.

Shapiro, D. A., Renock, S., Arrington, E., Chiodo, L. A., Liu, L. X., Sibley, D. R., Roth, B. L., and

Mailman, R. (2003). Aripiprazole, a novel antipsychotic drug with a unique and robust

pharmacology. Neuropsychopharmacology 28, 1400–1411.

Sheldon, P., and Aghajanian, G. K. (1991). Excitatory responses to serotonin (5-HT) in neurons of the

rat piriform cortex: Evidence for mediation by 5-HT1C receptors in pyramidal cells and 5-HT2

receptors in interneurons. Synapse 9, 208–218.

Shen, Y., Monsma, F., Jr., Metcalf, M. A., Jose, P. A., Hamblin, M. W., and Sibley, D. R. (1993).

Molecular cloning and expression of a 5-hydroxytryptamine7 serotonin receptor subtype. J. Biol.

Chem. 268, 18200–18204.

Shore, D., Korpi, E. R., Bigelow, L. B., Zec, R. F., and Wyatt, R. J. (1985). Fenfluramine and chronic

schizophrenia. Biol. Psychiatry 20, 329–352.

Simpson, M. D., Lubman, D. I., Slater, P., and Deakin, J. F. (1996). Autoradiography with [3H]8-

OH-DPAT reveals increases in 5-HT(1A) receptors in ventral prefrontal cortex in schizophrenia.

Biol. Psychiatry 39, 919–928.

Slater, P., Doyle, C. A., and Deakin, J. F. (1998). Abnormal persistence of cerebellar serotonin-1A

receptors in schizophrenia suggests failure to regress in neonates. J. Neural. Transm. 105,

305–315.

Snyder, S. (1980). Phencyclidine. Nature 285, 355–356.

Soper, H. V., Elliott, R. O., Rejzer, A. A., and Marshall, B. D. (1990). EVects of fenfluramine on

neuropsychological and communicative functioning in treatment-refractory schizophrenia

patients. J. Clin. Psychopharmacol. 10, 168–175.

Sorensen, S. M., Kehne, J. H., Fadayel, G. M., Humphreys, T. M., Ketteler, H. J., Sullivan, C. K.,

Taylor, V. L., and Schmidt, C. J. (1993). Characterization of the 5-HT2 receptor antagonist

MDL 100907 as a putative atypical antipsychotic: Behavioral, electrophysiological and

neurochemical studies. J. Pharmacol. Exp. Ther. 266, 684–691.

Stahl, S. M., Uhr, S. B., and Berger, P. A. (1985). Pilot study on the eVects of fenfluramine on

negative symptoms in twelve schizophrenic patients. Biol. Psychiatry 20, 1098–1102.

Stanley, M., and Mann, J. J. (1983). Increased serotonin-2 binding sites in frontal cortex of suicide

victims. Lancet 2, 214–216.

Stockmeier, C. A., Shapiro, L. A., Haycock, J. W., Thompson, P. A., and Lowy, M. T. (1996).

Quantitative subregional distribution of serotonin-1A receptors and serotonin transporters in the

human dorsal raphe. Brain Res. 727, 1–12.

Sumiyoshi, T., Stockmeier, C. A., Overholser, J. C., Dilley, G. E., and Meltzer, H. Y. (1996).

Serotonin1A receptors are increased in postmortem prefrontal cortex in schizophrenia. Brain Res.

708, 209–214.

162 ANISSA ABI-DARGHAM



Svensson, T. H. (1993). Mode of action of atypical neuroleptic drug: Role of 5HT2 receptor

antagonism. Schizophr. Res. 11, 115P.

Svensson, T. H., and Tung, C. S. (1989). Local cooling of pre-frontal cortex induces pace-maker-like

firing of dopamine neurons in rat ventral tegumental area in vivo. Acta Physiol. Scand. 136,

135–136.

Svensson, T. H., Tung, C. S., and GrenhoV, J. (1989). The 5-HT2 antagonist ritanserin blocks the

eVect of prefrontal cortex inactivation on rat A10 dopamine neurons in vivo. Acta Physiol. Scand.

136, 497–498.

Svensson, T. H., Mathe, J. M., Andersson, J. L., Nomikos, G. G., Hildebrand, B. E., and Marcus, M.

(1995). Mode of action of atypical neuroleptics in relation to the phencyclidine model of

schizophrenia: Role of 5-HT2 receptor and alpha 1-adrenoceptor antagonism. J. Clin.

Psychopharmacol. 15, 11S–18S.

Szabo, Z., McCann, U. D., Wilson, A. A., ScheVel, U., Owonikoko, T., Mathews, W. B., Ravert,

H. T., Hilton, J., Dannals, R. F., and Ricaurte, G. A. (2002). Comparison of (þ)-(11)C-McN5652

and (11)C-DASB as serotonin transporter radioligands under various experimental conditions.

J. Nucl. Med. 43, 678–692.

Tauscher, J., Kapur, S., VerhoeV, N. P., Hussey, D. F., Daskalakis, Z. J., Tauscher-Wisniewski, S.,

Wilson, A. A., Houle, S., Kasper, S., and Zipursky, R. B. (2002). Brain serotonin 5-HT1A

receptor binding in schizophrenia measured by positron emission tomography and [11C]WAY-

100635. Arch. Gen. Psychiatry 59, 514–520.

Titeler, M., Lyon, R. A., and Glennon, R. A. (1988). Radioligand binding evidence implicates the

brain 5HT2 receptor as a site of action for LSD and phenylisopropylamine hallucinogens.

Psychopharmacology 94, 231–316.

Tollefson, G. D., Beasley, C., Jr., Tran, P. V., Street, J. S., Krueger, J. A., Tamura, R. N., GraVeo,

K. A., and Thieme, M. E. (1997). Olanzapine versus haloperidol in the treatment of

schizophrenia and schizoaVective and schizophreniform disorders: Results of an international

collaborative trial. Am. J. Psychiatry 154, 457–465.

Trichard, C., Paillere-Martinot, M. L., Attar-Levy, D., Blin, J., Feline, A., and Martinot, J. L. (1998).

No serotonin 5-HT2A receptor density abnormality in the cortex of schizophrenic patients

studied with PET. Schizophr. Res. 31, 13–17.

TruYnet, P., Tamminga, C. A., Fabre, L. F., Meltzer, H. Y., Riviere, M. E., and Papillon-Downey, C.

(1999). Placebo-controlled study of the D4/5-HT2A antagonist fananserin in the treatment of

schizophrenia. Am. J. Psychiatry 156, 419–425.

Ugedo, L., GenhoV, J., and Svensson, T. H. (1989). Ritanserin, a 5-HT2 receptor antagonist,

activates midbrain dopamine neurons by blocking serotonergic inhibition. Psychopharmacology 98,

45–50.

van Praag, H. M., Lemus, C., and Kahn, R. (1987). Hormonal probes of central serotonergic activity:

Do they really exist? Biol. Psychiatry 22, 86–98.

Van Tol, H. H. M., Bunzow, J. R., Guan, H.-C., Sunahara, R. K., Seeman, P., Niznik, H. B., and

Civelli, O. (1991). Cloning of the gene for a human dopamine D4 receptor with high aYnity for

the antipsychotic clozapine. Nature 350, 610–614.

Vollenweider, F. X. (1998). Advances and pathophysiological models of hallucinogenic drug actions in

humans: A preamble to schizophrenia research. Pharmacopsychiatry 31(Suppl. 2), 92–103.

Vollenweider, F. X., Vollenweider-Scherpenhuyzen, M. F., Babler, A., Vogel, H., and Hell, D. (1998).

Psilocybin induces schizophrenia-like psychosis in humans via a serotonin-2 agonist action.

Neuroreport 9, 3897–3902.

Vollenweider, F. X., Vontobel, P., Hell, D., and Leenders, K. (1999). 5-HT modulation of dopamine

release in basal ganglia in psilocybin-induced psychosis in man—a PET study with [11C]

raclopride. Neuropsychopharmacology 20, 424–433.

ALTERATIONS OF SEROTONIN TRANSMISSION IN SCHIZOPHRENIA 163



Wander, T. J., Nelson, A., Okazaki, H., and Richelson, E. (1987). Antagonism by neuroleptic of

serotonin 5-HT1A and 5-HT2 receptors of normal human brain in vitro. Eur. J. Pharmacol. 143,

279–282.

Wang, R. Y. (1981). Dopaminergic neurons in the rat ventral tegmental area. III. EVects of D- and

L-amphetamine. Brain Res. Rev. 3, 153–165.

Weinberger, D. R., and Gallhofer, B. (1997). Cognitive function in schizophrenia. Int. Clin.

Psychopharmacol. 12(Suppl. 4), S29–S36.

Whitaker, P. M., Crow, T. J., and Ferrier, I. N. (1981). Tritiated LSD binding in frontal cortex in

schizophrenia. Arch. Gen. Psychiatry 38, 278–280.

Wiesel, F.-A., Nordstrom, A.-L., Farde, L., and Eriksson, B. (1994). An open clinical and biochemical

study of ritanserin in acute patients with schizophrenia. Psychopharmacology 114, 31–38.

Williams, J., and Davies, J. A. (1983). The involvement of 5-hydroxytryptamine in the release of

dendritic dopamine from slices of substantia nigra. J. Pharm. Pharmacol. 35, 734–737.

Wooley, D. W., and Shaw, E. (1954). A biological and pharmacological suggestion about certain

mental disorder. Proc. Natl. Acad. Sci. USA 40, 228–231.

Wurtman, R. J., Heft, F., and Melamed, E. (1981). Precursor control of neurotransmitter synthesis.

Pharmacol. Rev. 32, 315–335.

Wyatt, R. J., Vaughan, T., Galanter, M., Kaplan, J., and Green, J. (1972). Behavioral changes of

chronic schizophrenic patients given L-5-hydroxytryptophan. Science 177, 1124–1126.

Yasuno, F., Suhara, T., Ichimiya, T., Takano, A., Ando, T., and Okubo, Y. (2004). Decreased

5-HT1A receptor binding in amygdala of schizophrenia. Biol. Psychiatry 55, 439–444.

164 ANISSA ABI-DARGHAM



SEROTONIN AND DOPAMINE INTERACTIONS IN RODENTS AND
PRIMATES: IMPLICATIONS FOR PSYCHOSIS AND

ANTIPSYCHOTIC DRUG DEVELOPMENT

Gerard J. Marek

Eli Lilly and Company, Lilly Research Laboratories, Psychiatric Disorders Discovery Biology
Lilly Corporate Center, Indianapolis, Indiana 46285, USA

I. Introduction

II. Dopamine and 5-HT Receptors

III. Psychomotor Stimulants: A Dopamine–Serotonin Interaction ‘‘Case Study’’

IV. Monoaminergic Nuclei Interactions

V. Serotonin and Dopamine in the Thalamus

VI. Dopamine and Serotonin in the Striatum

VII. Dopamine and Serotonin in the Hippocampal Formation

VIII. Dopamine and Serotonin in the Prefrontal Cortex/Neocortex

IX. Animal Models

X. Conclusions

References

Since the late 1950s, appreciation of dopamine receptor blockade has played

a primary role in understanding the mechanism underlying the therapeutic
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symptoms of schizophrenia (e.g., delusions and hallucinations). Development of

the second generation of antipsychotic drugs, otherwise known as atypical

antipsychotic drugs, has resulted in treatments with improved subjective

tolerability but relatively modest improvements in the negative symptoms of

schizophrenia such as avolition, flat aVect, and anhedonia. The major current

challenge is to develop medications which can further improve negative symptoms

treatment and also tackle the intractable clinical problems of cognitive impairment

associated with schizophrenia. Further advances along these lines with respect to

the dopaminergic and serotonergic neurostransmitter systems will be aided by an

appreciation of the interaction between dopamine and serotonin receptor subtypes

in a range of key brain structures, such as the prefrontal cortex, thalamus, striatum,

amygdala, hippocampus, and the brain stem nuclei, from which the cell bodies of

monoaminergic-containing neurons originate. Increasing emphasis on the use

of animal models which are homologous to critical aspects of the pathophysiology
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in the brains of schizophrenic patients will also be required, especially as negative

symptoms and cognitive impairment become an important focus for generating

novel therapeutics.

I. Introduction

Serotonin and dopamine represent two of the three monoaminergic neuro-

transmitter systems that play prominent roles in the action of most psychotropic

drugs used for the treatment of major neuropsychiatric syndromes. Dopamine,

especially, has played a critical role in therapeutics for schizophrenia since the

initial hypothesis by Carlsson that blockade of dopamine receptors plays a role in

their therapeutic eVects for psychotic patients (Carlsson and Lindquist, 1963).

This initial hypothesis has evolved over the last several decades to emphasize a

relative hypofunctional state in the prefrontal cortex and a hyperfunctional

state in the striatum (Abi-Dargham, 2004; Laruelle et al., 2005; Winterer and

Weinberger, 2004). The emergence of human PET studies of receptor occupancy

demonstrated that occupancy of �65% of dopamine D2 receptors is associated

with the therapeutic eVects of antipsychotic drugs (Farde et al., 1992; Kapur et al.,

1999) except for clozapine and aripiprazole. Antipsychotic drug development in

the last 15 years has emphasized serotonin (5-hydroxytryptamine, 5-HT) and

5-HT2A receptor blockade as a mechanism to either minimize extrapyramidal

symptoms (EPS) or increase eYcacy for psychotic symptoms, negative or depres-

sive symptoms, and cognitive dysfunction (Meltzer, 1999; Meltzer et al., 1989).

This has resulted in a number of ‘‘atypical’’ antipsychotic drugs or second

generation antipsychotics (SGA). Here we discuss the underlying neurobiology

for the dopamine and serotonergic neurotransmitter systems, their interactions,

and gaps in our knowledge toward developing better therapeutic agents for

schizophrenia. A large literature has developed describing interactions of dopa-

mine and 5-HT regarding psychomotor stimulant drug eVects, so understanding

these relationships will be emphasized. A number of cortical and subcortical

structures have been implicated in schizophrenia. Since structural changes and/

or dysfunction of the prefrontal cortex (Selemon and Goldman-Rakic, 1999;

Selemon et al., 1995), thalamus (Clinton and Meador-WoodruV, 2004), dorsal
and ventral striatum (nucleus accumbens, n. accumbens), and the hippocampal

formation (Harrison, 2004) play prominent roles from postmortem studies of

schizophrenic patients and neuroimaging studies from first-break schizophrenic

patients, we will focus attention on how dopamine and 5-HT interact to modu-

late the function of these macrocircuits, with a special emphasis on the prefrontal

cortex. Other regions are implicated in the neurodevelopmental changes, and
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pathophysiology of schizophrenia such as the amygdala or the cerebellum will

not be discussed in this chapter.

II. Dopamine and 5-HT Receptors

Dopamine has a neuromodulatory influence on neurotransmission in

the brain by acting on five diVerent dopamine G-protein–coupled receptor sub-

types (Neve et al., 2004) that are defined by both a dopamine D1-like (dopamine

D1 and D5 receptors) and dopamine D2-like (dopamine D2, D3, and D4

receptors). The D1-like receptors typically couple to G�s and G�olf which leads

to sequential activation of adenylyl cylcase, cyclic AMP-dependent protein

kinase, and the protein phosphatase-1 inhibitor DARPP-32. This leads to pleio-

tropic eVects on receptors, enzymes, ion channels, and transcription factors.

Dopamine D1 receptors may also couple to phospholipase C. The activation of

the phosphoinositide pathway and cAMP-dependent mobilization of intracellular

Ca2þ is responsible for other signaling properties. For example, activation of

either dopamine D1 or D5 receptors, if coexpressed with calcyon, can stimulate

calcium release from intracellular stores after the cell has been primed by

activation of G�q-coupled receptors (Lezcano et al., 2000). This type of interac-

tion appears to be region specific as it occurs in the neocortex and hippocampus

but not the striatum (Lezcano and Bergson, 2002). The dopamine D2-like

receptors (dopamine D2, D3, and D4) couple to G�i and G�o heterotrimeric

G-proteins to decrease activity of adenylyl cyclase but also regulate other eVectors
such as ion channels, phospholipases, protein kinases, and receptor tyrosine

kinases via G�� subunit interactions. These diVerential eVects on postreceptor

transduction pathways for the D1-like and D2-like receptor families emphasize

that the eVect of either increasing or decreasing dopaminergic transmission in a

given region of the brain is dependent on the receptors activated by tonic (volume

transmission) or phasic dopamine input (synaptic transmission) and the type of

neuron (glutamatergic projection cell or GABAergic interneuron or projection

cell) being aVected (Onn et al., 2006). Further complexity in dopamine receptor

signaling due to protein–protein interactions (e.g., receptor oligomerization or

receptor interactions with scaVolding and signal-switching proteins) are being

uncovered (Bergson et al., 2003; Neve et al., 2004).

Serotonin has a neuromodulatory influence on neurotransmission in the

brain and targets in the periphery by acting on at least 15 diVerent 5-HT receptor

subtypes (Aghajanian and Sanders-Bush, 2002; Barnes and Sharp, 1999) that

have been classified according to 7 diVerent families according to coupling to ion

channels (5-HT3 receptors) or heterotrimeric G-proteins (5-HT1A/1B/1D/1E/1F,

5-HT2A/2B/2C, 5-HT4, 5-HT5A/5B, 5-HT6, and 5-HT7 receptors). The 5-HT1

SEROTONIN AND DOPAMINE INTERACTIONS IN RODENTS AND PRIMATES 167



family of receptors is negatively coupled to adenylyl cyclase through G�i- and

G�o-containing G-proteins. The 5-HT5 family may also share this coupling.

In contrast, the 5-HT4, 5-HT6, and 5-HT7 receptors are positively coupled

to adenylyl cyclase through G�s. The 5-HT2 family of receptors are coupled to

phosphoinositide turnover and the arachidonate pathway via G�q/G�11-containing

G-proteins that are linked to phospholipases C and A2, respectively. The

5-HT3 receptor is directly coupled to ion channels and is the only ionotropic

monoaminergic receptor.

When considering dopamine and serotonin interactions at a cellular level,

activation of dopamine D1-like or 5-HT2A/2B/2C, 5-HT4, 5-HT6, and 5-HT7

receptors could potentiate the action of the other transmitter where these recep-

tors are colocalized in the same cells with similar transduction pathways. Such a

convergence of transduction pathways leading to an integrated modulation of

DARPP-32 has been demonstrated in the rodent forebrain (prefrontal cortex,

n. accumbens, neostriatum) for activation of dopamine D1, 5-HT2, 5-HT4, and

5-HT6 receptors (Nishi et al., 2000; Svenningsson et al., 2002). Similarly, the

dopamine D2-like and the 5-HT1 receptor family and 5-HT5 receptors could

also potentiate the action of either dopamine or serotonin when these receptors

are colocalized in the same cells with similar transduction pathways. Conversely,

opposing eVects of these neurotransmitters might be present where these recep-

tors are localized to a glutamatergic projection cell or GABAergic interneuron,

respectively. The later sections discussing the monoamine nuclei, the thalamus,

the prefrontal cortex, the striatum, and the hippocampus will discuss the known

relationships of these neurotransmitters and will also point out critical gaps to

understanding the monoaminergic transmitter interactions.

III. Psychomotor Stimulants: A Dopamine–Serotonin Interaction ‘‘Case Study’’

Prior to the elucidation of multiple dopamine and 5-HT receptors, a substan-

tial body of work had arisen to suggest that decreasing serotonergic neurotrans-

mission increased the behavioral eVects of amphetamine, the direct acting

dopamine agonist apomorphine, and dopamine (Breese et al., 1974; Campbell

and Fibiger, 1971; Carter and Pycock, 1978, 1979; Fuxe et al., 1975; Green and

Harvey, 1974; Hollister et al., 1974; Lucki and Harvey, 1979; Neill et al., 1972;

Segal, 1976). Conversely, increasing serotonergic neurotransmission decreased

the behavioral eVects of amphetamine, apomorphine, and dopamine (Breese

et al., 1974; Carter and Pycock, 1978; Warbritton et al., 1978).

Paradoxically, in vivo microdialysis studies have found that acute admin-

istration of the selective serotonin reuptake inhibitor (SSRI) fluoxetine with

the catecholamine-enhancing antidepressant bupropion appears to result in a
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synergistic increase in extracellular dopamine in the prefrontal cortex and

n. accumbens compared to either agent alone (Li et al., 2002). Similar work

suggesting at least an additive eVect between dopamine and 5-HT were revealed

by the locomotor stimulation observed for a combination of the SSRI fluovoxamine

and the nonselective reuptake inhibitor mazindol despite both drugs alone having

either had no eVect (mazindol) or decreasing locomotor activity (fluvoxamine).

The attenuation of fluvoxamine/mazindol-induced hyperactivity by the 5-HT2A

receptor antagonist M100907, and potentiation of fluoxamine/mazindol hyper-

activity by the 5-HT2B/2C receptor antagonist is consistent with reciprocal inter-

actions of 5-HT2A and 5-HT2C receptors (McMahon and Cunningham, 2001b)

discussed below. Clearly, diVerent 5-HT receptors may mediate diVerential
eVects on dopamine function. These conflicting sets of observations exploring

interactions of 5-HT and dopamine at mediating the eVects of psychomotor

stimulants or monoamine reuptake inhibitors may need to take into account

activation of diVerent 5-HT receptor subtypes with respect to tonic 5-HT release

(volume transmission) versus phasic 5-HT release (direct synaptic transmission).

While the pharmacological eVects of cocaine are frequently attributed to

eVects on dopamine, the ability of cocaine to inhibit 5-HT reuptake (Andersen,

1989; Gatley et al., 1996) and interactions between 5-HT and the dopaminergic

system also appear to be relevant for understanding the psychopharmacology of

cocaine. Reciprocal interactions between dopamine and 5-HT at a global level

would appear to play a role in the ability of the monoamine reuptake inhibitor

cocaine to decrease locomotor activity in dopamine (DAT) knockout mice

(Gainetdinov et al., 1999). In DAT knockout mice, a tonic elevation of extracel-

lular dopamine is thought to mediate the increase in locomotor activity in

comparison to wild-type mice. However, in naı̈ve rats, blockade of 5-HT2A

receptors attenuates the psychomotor activation induced by either amphetamine

or cocaine (McMahon and Cunningham, 2001a; O’Neill et al., 1999). Similar to

eVects reported above with SSRIs and the uptake inhibitor mazindol, there

also appear to be opposing eVects of 5-HT2A versus 5-HT2C receptor activation

or blockade on cocaine hyperactivity or self-administration (Filip et al., 2004;

Fletcher et al., 2002b; McMahon et al., 2001).

Positive modulation of cocaine-induced hyperactivity or self-administration

also appears with activation of 5-HT1A/7 receptors by 8-OH-DPAT (De La

Garza and Cunningham, 2000). Similarly, activation of 5-HT1B receptors in

the ventral tegmental area (VTA) also increases cocaine-induced extracellular

dopamine in the ipsilateral n. accumbens (O’Dell and Parsons, 2004). Over-

expression of 5-HT1B receptors in the VTA–n. accumbens pathway increases

cocaine-induced locomotion and results in a leftward shift for the cocaine-

induced conditioned place preference (Neumaier et al., 2002). These eVects are
consistent with the absence of cocaine-induced place preference in 5-HT1B

receptor knockout mice (Belzung et al., 2000). In contrast to cocaine-induced
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eVects, 5-HT1B receptor activation in the n. accumbens decreases amphetamine

self-administration. This discrepancy between the eVects of 5-HT1B receptor

activation may be dependent on the presence of 5-HT1B receptors in diVerent
cellular compartments (Fletcher et al., 2002a). Pharmacological blockade of 5-HT4

receptors in the n. accumbens shell attenuates cocaine-induced hyperactivity

(McMahon and Cunningham, 1999). While 5-HT6 receptor antagonism does

not alter cocaine eVects, amphetamine-induced behavioral eVects were poten-

tiated (Frantz et al., 2002). Thus, activation of a number of serotonin receptors

(5-HT1A/7, 5-HT1B, 5-HT2A, 5-HT4) does appear to mediate, in part, the

behavioral and neurochemical eVects of psychomotor stimulants. However, there

also appears to be particular 5-HT receptors (e.g., 5-HT2C receptors) which

oppose the stimulating eVects of amphetamines or cocaine.

IV. Monoaminergic Nuclei Interactions

Dopamine-containing cell bodies are localized primarily in the substantia

nigra pars compacta (SNpc) and the VTA of the midbrain (Moore and Bloom,

1978). The SNpc projects to the dorsal striatum (caudate and putamen) and

makes up the nigrostriatal dopaminergic system. The VTA has relatively precise

topographical relationships with the prefrontal cortex (mesocortical dopaminer-

gic system), the ventral striatum (n. accumbens), and other areas (thalamus,

hippocampus, lateral septum, amygdala). Together, the projections to the

n. accumbens and the other limbic structures outside of the prefrontal cortex make

up the mesolimbic dopaminergic system. These nuclei which contain dopami-

nergic cells are not homogenous with respect to cell type. At least 15–20% of the

neurons within the VTA are known to be GABAergic interneurons, and at least a

portion of these are projection GABAergic interneurons to the prefrontal cortex

(Carr and Sesack, 2000) and the n. accumbens (Van Bockstaele and Pickel, 1995).

While these general relationships hold, it has also been proposed that the

dopaminergic aVerents to the primate thalamus may represent an additional

distinct system involving cell bodies of origin in the hypothalamus, periacque-

ductal gray (PAG) matter, ventral mesencephalon, and the lateral parabrachial

nucleus (Sanchez-Gonzalez et al., 2005).

Serotonin-containing cell bodies which project to the limbic forebrain are

found primarily in the dorsal raphe nucleus (DR) and the median raphe nucleus

(MR) in the pons (Hensler, 2006). The DR projects to the prefrontal cortex, the

lateral septum, ventral hippocampus, and n. accumbens as well as providing a

relatively strong innervation to the substantia nigra pars reticulate (a nuclei

containing the dendrites of SNpc cells) and VTA. The MR projections include

the dorsal hippocampus, medial septum, and hypothalamus. Some areas such as
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the intralaminar and midline thalamic nuclei receive a projection from both the

DR and the MR (Azmitia, 1978). The midbrain raphe nuclei, like the midbrain

SNpc and VTA, contain GABAergic interneurons. There is some evidence that at

least some of these GABAergic interneurons may also be projection GABAergic

interneurons (O’Hearn and Molliver, 1984; Van Bockstaele et al., 1993). An

interesting feature about the raphe nuclei is that most forebrain projection areas

send back reciprocal projections via the habenula nuclei. However, the prefrontal

cortex appears to be an area with a privileged direct projection to the dorsal

raphe (Aghajanian and Wang, 1977; Hajos et al., 1998; Martin-Ruiz et al., 2001a;

Peyron et al., 1998; Sesack et al., 1989).

The dorsal raphe nucleus also sends a dense serotonergic projection to the

pars reticulata of the substantia nigra (SNr; Fallon and Loughlin, 1995). Dorsal

raphe stimulation mainly induces inhibitory eVects in SNpc cells, though non-5-

HT aVerents may be involved (Gervais and Rouillard, 2000). Both the dorsal

raphe and the median raphe send axons which arborize in the VTA (Azmitia,

1978; Vertes, 1991; Vertes et al., 1999). In turn, the VTA and cells from the A11

hypothalamic cell group project back to the dorsal raphe (Kalen et al., 1988;

Peyron et al., 1995). While activation of both dopamine D1-like and D2-like

receptors increase the firing rate of serotonergic-containing DR neurons and in-

crease 5-HT release in the DR and striatum, it appears that dopamine D2 re-

ceptors outside of the DR are involved in these eVects (Martin-Ruiz et al., 2001b).

GABAergic neurons in the PAG-expressing dopamine D2 mRNA are among

candidate regions mediating this eVect.
Regarding dopamine–serotonin interactions, multiple 5-HT receptors have

diVerent, and apparent, opposing influences on the presynaptic side of the dopa-

minergic system. There is a well-documented eVect of 5-HT2C receptor stimulation

activating GABAergic cells in the SN and VTA, and thereby inhibiting frontocor-

tical and accumbal dopaminergic transmission. Conversely, blockade of 5-HT2C

receptors increases activity of dopamine-containing cells in the VTA, and thereby

increases dopaminergic transmission in the mesolimbic and mesocortical dopa-

mine pathways (De Deurwaerdere et al., 2004; DiMattio et al., 2001; Millan

et al., 2000). Furthermore, in vivo evidence suggests that 5-HT2C receptors inhibit

dopamine release in the rat striatum and n. accumbens via constitutive activity

(De Deurwaerdere et al., 2004).

While activation of the 5-HT2C receptor appears to play an inhibitory role on

dopaminergic neurotransmission, activation of another receptor from the same

family, the 5-HT2A receptor, appears to facilitate dopaminergic neurotransmis-

sion in the mesolimbic and mesocortical pathways. For example, 5-HT2A recep-

tor mRNA tends to colocalize with a fraction of the dopamine-containing cells in

regions of the VTA that preferentially projects to terminal fields of the mesolim-

bic pathway (Nocjar et al., 2002). An ultrastructural study has found that 5-HT2A

receptors are present in the dendrites and soma of VTA dopamine-containing
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cells (Doherty and Pickel, 2000). There is also a significant amount of functional

data (discussed above) suggesting that 5-HT2A receptor activation plays a role in

the psychomotor stimulant eVects of cocaine and amphetamine by enhancing

extracellular levels of dopamine. The increase seen in extracellular DA following

local infusion into the prefrontal cortex with the highly selective 5-HT2A receptor

antagonist suggests a facilitatory role for this receptor in the mesocortical

pathway (Pehek et al., 2001). Activation of cortical 5-HT2A receptors also appears

to increase stress-induced dopamine release in the mPFC (Pehek et al., 2006).

This eVect may be mediated by polysynaptic neuronal circuits involving cortical

pyramidal cells with 5-HT2A receptors in the apical dendritic field (Bortolozzi

et al., 2005). The immunohistochemical localization of 5-HT2A receptors in

presumed monoaminergic axons of the prefrontal cortex might be an additional

or alternative substrate for these latter findings (Miner et al., 2003). A previous

electron microscopic study had observed the presence of 5-HT2A receptor

immunoreactivity in small unmyelinated axons of the VTA that were likely either

dopaminergic axons or axons from nondopaminergic cells coursing through the

VTA (Doherty and Pickel, 2000). These opposing eVects of 5-HT2A versus

5-HT2C receptors on dopaminergic neurotransmission highlight the critical im-

portance of understanding the localization of diVerent 5-HT receptors, SERT,

and DAT with respect to both microcircuits and macrocircuits involving

corticostriato-thalamic pathways.

5-HT1A receptor partial agonist action has been discussed for a number of

years with respect to development of antidepressant drugs by understanding the

relative role of somatodendritic 5-HT1A autoreceptors and 5-HT1A postsynaptic

receptors. There are a number of compounds currently in development posses-

sing partial agonist action at 5-HT1A receptors in addition to eVects at other

monoaminergic neurotransmitters such as dopamine D2/D3 receptors.

V. Serotonin and Dopamine in the Thalamus

The serotonergic innervation of the thalamus from the dorsal and median

raphe is mainly distributed to the midline and intralaminar thalamic nuclei, the

so-called ‘‘nonspecific’’ thalamic nuclei of Lorente de No. While the aVerent
projection from the dorsomedial nucleus (MD n.) of the thalamus to layer III of

the neocortex is much discussed as a defining feature of the prefrontal cortex, the

much less studied midline and intralaminar thalamic nuclei have a number of

neuroanatomical relationships that make them critical structures with respect to

major neuropsychiatric syndromes and therapeutics (Van der Werf et al., 2000,

2002). First of all, these midline and intralaminar thalamic nuclei project to layers I

and Va throughout the prefrontal cortex providing discrete laminar inputs to
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the distal dentritic tuft and proximal apical dendrites of the principal output cells,

the layer V pyramidal cells. The importance of the thalamus in coordinating

higher functions of the cortex may be suggested by the tenfold greater number of

corticothalamic fibers than thalamocortical fibers; the layer V pyramidal cells

project back to the intralaminar and midline thalamic nuclei. Second, the

intralaminar and midline thalamic nuclei make up the only projection from the

thalamus to the dorsal and ventral striatum. Third, the midline and intralaminar

thalamic nuclei also project to the amygdala, subiculum and return a principal

projection from the brain stem reticular activating system. While the intralami-

nar and midline thalamic nuclei express a rich distribution of 5-HT2C and

5-HT1B receptor mRNA in the adult rat, activation of 5-HT2A receptors appear

to play an important role in inducing glutamate release from these aVerents in
layer I and Va of the prefrontal cortex (Aghajanian and Marek, 1997; Marek

et al., 2001). Thus, these anatomical relationships define a critical feature for the

intralaminar and midline thalamic nuclei consistent with their physiological

importance in mediating arousal and vigilance (Kinomura et al., 1996).

While the serotonergic and noradrenergic innervation of the thalamus is

much more prominent than that of dopamine, there is also evidence for physio-

logical eVects of dopamine within the thalamus. There is evidence for dopamine

D2/D3 receptor binding in the human midline and intralaminar thalamic nuclei

which is most intense for the paraventricular thalamic (PVT) nucleus (Rieck et al.,

2004). In addition to dopaminergic aVerents to the PVT, there also appears to be

a role for dopamine D2 receptor stimulation in modulating the MD n. Dopamine

D2 receptor activation appears to increase the excitability of rat MD n. cells

recorded using an in vitro preparation (Lavin and Grace, 1998). This direct eVect
of dopamine in the MD n. could have even a greater eVect on distinct thalamo-

cortical pathways given the convergence of axon terminals from the MD n. and

the VTA (Kuroda et al., 1996). However, it should also be noted that most of the

dopaminergic cells of origin which project to the rodent MD n. and the PVT

appear to arise from the hypothalamus rather than the VTA. In the primate,

there does appear to be a projection from the SNr to the MD n., although the

neurotransmitter phenotype of these cells has not been identified. In the primate,

DAT immunopositive labeling has clearly suggested that dopamine does inner-

vate the MD n. (Melchitzky and Lewis, 2001). As mentioned earlier, the hetero-

geneity of dopamine innervation to diVerent regions in the thalamus has prompted

one group to suggest that the ‘‘thalamic dopaminergic system’’ may be a novel

system with respect to the classical recognition of the nigrostriatal, mesocortical,

and mesolimbic dopaminergic systems (Sanchez-Gonzalez et al., 2005). With

respect to the potential complementary roles played by 5-HT2A receptor activation

versus dopamine D2 receptor activation on thalamocortical pathways, it is inter-

esting that dopamine receptor activation, unlike 5-HT2A or �1 adrenergic receptor

activation, does not appear to play a role at inducing excitatory postsynaptic
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currents (EPSCs) recorded from layer V pyramidal cells, which appear to arise

in part from the midline and intralaminar thalamic nuclei (Marek and Aghajanian,

1999).

VI. Dopamine and Serotonin in the Striatum

The eVects of dopamine and serotonin in the striatum cannot be addressed

without a brief description of the basal ganglia microcircuitry and macrocircuitry

(Wilson, 1998). The neostriatum consists of dorsal striatum (caudate/putamen)

and ventral striatum (n. accumbens). Increased dopaminergic neurotransmission

in circuits running through the dorsal striatum is associated with motor stereo-

typies such as those induced by high dose-amphetamine treatment. The caudate/

putamen receives inputs from sensory cortex, motor cortex, and prefrontal cortex

that converge with projections from the intralaminar thalamic nuclei, dopami-

nergic inputs from the SNpc, and serotonergic inputs from the (DR). The

GABAergic, substance P-containing medium spiny cells of the caudate/putamen

then project to two major regions: the globus pallidus [external (GPe) and

internal (GPi) segments] and the pars reticulata of the SNr. The ‘‘direct pathway’’

leading from the GPi and the SNr projects to the ventral thalamic nuclei tier,

lateral habenula nuclei, and the deep layers of the superior colliculus. The

‘‘indirect pathway’’ involves GABAergic enkephalin-containing neostriatal medium

spiny cells of the caudate/putamen which project to the external segment of the

globus pallidus, which in turn projects to the subthalamic nucleus. It should be noted

that the neostriatum does not provide a direct reciprocal projection back to the

neocortex and the thalamus.

Enhanced dopaminergic neurotransmission in circuits running through the

ventral striatum (n. accumbens) is associated with stimulation of increased loco-

motor activity induced by relatively low-dose amphetamine treatment. The

n. accumbens core, unlike the dorsal striatum, receives serotonergic input via the

median raphe. There are important topographical relationships of diVerent areas
of the prefrontal cortex, amgydala, thalamic, and hippocampus projecting onto

the accumbal patch and matrix areas (Groenewegen et al., 1999). For example,

the n. accumbal patches project to the SNpc while the matrix areas project to the

SNr. These patch (striosome) and matrix regions also have substantial diVerences
with respect to �-opioid receptor localization, calcium-binding proteins, and acetyl-

cholinesterase [patch neuropil high in �-opioid receptors; low in calbindin;

acetylcholinesterase rich (Herkenham and Pert, 1981)]. Enkephalin and sub-

stance P have a more complex distribution, though they are diVerentially ex-

pressed in the patch or matrix in diVerent regions of the neostriatum. The patch

versus matrix distinction has important relationships to macrocircuitry aVerent
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relationships. For example, the n. accumbens core matrix receives projections

from layer III or superficial layer V pyramidal cells in the prefrontal cortex in

addition to strong aVerents from a number of midline and intralaminar thalamic

nuclei. The n. accumbens core patches receive projections from deep layer V

pyramidal cells in the PFC (Gerfen, 1989) and amygdala but are relatively sparse

with respect to thalamic aVerents. However, it is important to note that the

topography of aVerents to the striatum from diVerent prefrontal cortical layers to
the striosomes (patch) or matrix can switch in diVerent regions of the caudate/

putamen (Ragsdale and Graybiel, 1990). One diVerence between the patch (strio-

some) and matrix region in the human caudate and putamen is that 5-HT2A

receptor binding appears more intense in the patch regions (Lopez-Gimenez

et al., 1999; Waeber and Palacios, 1994). 5-HT1A receptor binding in the primate

striatum also is more intense in the striosome or patch neuropil (Frechilla et al.,

2001; Mengod et al., 1996).

This mosaic organization of the neostriatum and accumbens was previously

identified in primates. The patch or striosome is equivalent to the cell islands

while the matrix is similarly named in the primate (Goldman-Rakic, 1982). In the

rodent, patterns of fos immunopositive cells have been studied with respect to

predicting extrapyramidal side eVects consistent with typical versus atypical

antipsychotic drugs. The ratio striosome/matrix cells expressing fos immunopo-

sitive cells is greater for atypical antipsychotic drugs than for typical antipsychotic

drugs such as haloperidol (Bubser and Deutch, 2002). However, single serotonin

receptor subtypes such as the 5-HT1A or 5-HT2A receptor did not appear, by

themselves, to account for these eVects. These striatal compartments are diVer-
entially modulated under other circumstances. For example, the matrix com-

partment of the rat is preferentially activated during free movement, gentle

restraint, or focal tactile stimulation during gentle restraint (Brown et al., 2002).

Conversely, stereotypy induced by cocaine or amphetamine or psychostimulant-

induced sensitization appears to be associated with preferential early gene ex-

pression in the striosome compartment of the striatum (Canales and Graybiel,

2000; Capper-Loup et al., 2002).

Dopamine can diVerentially aVect the direct and indirect pathways of the

striatum. Dopamine D1 receptors are preferentially expressed in the substance

P-containing striatonigral direct pathway whereas dopamine D2 receptors are

preferentially expressed on the enkephalin-containing spiny neurons making up

the striatopallidal indirect pathway (Gerfen et al., 1990; Surmeier et al., 1996).

Thus, dopamine would tend to enhance neurotransmission through the direct

pathway while attenuating transmission in the indirect pathway. However, there

is also a subpopulation of striatal principal cells (medium spiny neurons) which

coexpress both D1 and D2 receptors (Surmeier et al., 1996). While the actions of

dopamine in the neostriatum are varied depending on dopamine receptor sub-

type and cellular phenotype, an important action of dopamine D1 receptors is to
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enhance the glutamatergic input arriving from the prefrontal cortex/neocortex

(Nicola et al., 2000).

The n. accumbens shell region appears to be part of the extended amygdala

and has yet diVerent input–output relationships compared to the n. accumbens

core (Heimer, 2003). In fact, the shell region is considered to be a constituent of

the extended amygdala involving the n. accumbens shell, the central n. of the

amygdala, and the bed n. of the stria terminalis (BNST).

Studies involving the lesioning of dopaminergic terminals in the striatum have

revealed interesting relationships between dopamine and serotonin. Namely,

neonatal destruction of dopaminergic nerve terminals in the dorsal striatum

results in a 5-HT hyperinnervation of the adult striatum as reviewed elsewhere

(Kostrzewa et al., 1998).

VII. Dopamine and Serotonin in the Hippocampal Formation

The hippocampal formation includes the dentate gyrus, the four subdivisions

of Ammon’s horn (CA1/2/3/4), the subiculum, the entorhinal cortex, and the

parahippocampal gyrus. Both the rat and cynomolgus monkey have a rich

dopaminergic innervation of the entorhinal cortex, subiculum, and CA1 and/

or CA3 (Baulac et al., 1986; Samson et al., 1990). Dopaminergic-containing

neurons of the VTA project to the ventral hippocampus (Gasbarri et al., 1994;

Verney et al., 1985).

All five dopamine receptor subtypes are expressed in the hippocampal

formation, though with a diVerential distribution (Meador-WoodruV et al., 1994).

There is also a rich serotonergic innervation of the hippocampal formation from

both the dorsal and especially the median raphe (Hensler, 2006). Of the serotonin

receptors, the 5-HT1A receptor has been associated with playing important func-

tional roles in the hippocampus (Andrade and Nicoll, 1987; Haddjeri et al., 1998).

Alterations in the oscillatory frequencies of the hippocampus have been associated

with important behavioral state changes; 5-HT1A receptors in the hippocampus

have been implicated in modulating hippocampal oscillations (Gordon et al., 2005).

The 5-HT4 receptor induces a slow excitatory response to 5-HT in the hippocam-

pus which has been compared functionally to 5-HT2A receptor activation in the

neocortex (Andrade and Chaput, 1991). In this respect, the 5-HT4 in addition to

5-HT1A receptors has been implicated as a potential target for cognitive-enhancing

therapies for schizophrenic patients (Roth et al., 2004). The 5-HT6 receptor,

localized in the hippocampus, striatum, cerebral cortex, and modulates choliner-

gic neurotransmission, is another target for cognitive enhancement by selective

antagonists (Roth et al., 2004).
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The subiculum is important as a site of routing incoming activity to the

hippocampus, prior to processing in the dentate gyrus and Ammon’s horn. For

example, these regions receive aVerents from the reunions n. and the anterior tier

nuclei of the thalamus (Berendse and Groenewegen, 1991; van Groen and Wyss,

1995; Van Groen et al., 1999). The ventral hippocampus, which has important

anatomical relationships to the prefrontal cortex and n. accumbens, is of special

interest with respect to neurodevelopmental disturbances of cortico-limbic cir-

cuits in schizophrenia. The hippocampus provides a monosynaptic input to the

prefrontal cortex via the subiculum and temporal aspect of CA1 (Jay et al., 1989;

Laroche et al., 1990; Wyss et al., 1980). There does not appear to be a specific

relationship with hippocampal aVerents to the medial prefrontal cortex similar to

the thalamocortical aVerents from the medial dorsal n. (Carr and Sesack, 1996;

Kuroda et al., 1996). The subiculum also provides a massive input to the

n. accumbens that is necessary for accumbal neurons to enter a depolarized,

‘‘up’’ state (O’Donnell and Grace, 1995). Dopamine D1-like and probably D2

receptors play at least a permissive role in the locomotor activation and increase

in n. accumbens extracellular dopamine induced by local infusion of NMDA into

the ventral hippocampus (Zornoza et al., 2005).

VIII. Dopamine and Serotonin in the Prefrontal Cortex/Neocortex

Dopamine and serotonin are two of the aminergic neurotransmitters (along

with norepinephrine and histamine) that are constituents of the ascending arousal

system from the brain stem which also includes the reticular activating system.

As such, an assessment of the role for dopamine and serotonin for cortical

function must include their role in the ascending arousal system and the modular

nature of the prefrontal cortex/neocortex (Grillner et al., 2005; Silberberg et al.,

2005). The thick, tufted layer V pyramidal cells are the principal output cell for

the prefrontal cortex/neocortex with projections to the thalamus, striatum,

amygdala, brain stem, and spinal cord (Deschenes et al., 1994). These layer V

pyramidal cells provide the ‘‘driving’’ input to the midline and intralaminar

thalamic nuclei discussed above (Sherman and Guillery, 1998). Untufted layer V

pyramidal cells that do not extend tufts of dendrites up into layer I of the

prefrontal cortex/neocortex project to the contralateral hemispheres. A popula-

tion of layer VI corticothalamic pyramidal cells project to the first-order thalamic

nuclei as a ‘‘modulatory’’ input. Thus, understanding relative dopaminergic or

serotonergic control of layer V versus layer VI pyramidal cells has important

implications for controlling or modulating diVerent types of thalamocortical

pathways.
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DiVerent subpopulations of cortical pyramidal cells also project to the stria-

tum (Groenewegen et al., 1999). For the rat ventral prelimbic region of the

prefrontal cortex, for example, deep layer V pyramidal cells project to the

dorsomedial portion of the shell and ‘‘patches’’ (see below) of the n. accumbens

core. In contrast, layer III and superficial layer VI pyramidal neurons send fibers

to the ‘‘matrix’’ compartment of the n. accumbens core.

Most of the remaining 20% of PFC/neocortical neurons are GABAergic

interneurons which form a variety of classes based on nature of principal eVerent
contact (interneuron vs pyramidal cell), portion of the axonal/soma/dendritic

surface that is contacted by the interneuron, nature of calcium-binding protein

expressed by the cell, nature of peptide neurotransmitters colocalized to the

interneuron (e.g., substance P, neurokinin B, CCK), and the electrophysiological

phenotype of the interneuron. The critical importance of interneurons in sculpt-

ing and modulating oscillations of the cortex is highlighted for schizophrenia

given the importance of some oscillations such as those in the gamma range as a

substrate for higher cortical function (Symond et al., 2005). In addition to the role

of interneurons in shaping oscillations, the observations that interneurons appear

to be involved in the pathophysiology of schizophrenia makes understanding the

role of dopamine and 5-HT for interneuron function a critical question (Levitt

et al., 2004).

DiVerences exist for the serotonergic and dopaminergic projections to the

prefrontal cortex and neocortex. First, serotonergic terminals are more widely

and evenly distributed in diVerent regions of the prefrontal cortex and neocortex

(Tork, 1990). This is in contrast to the dopaminergic system which is limited

largely to the prefrontal cortex in the rodent. The primate, however, has an

expanded regional dopamine distribution outside of the prefrontal cortex (Berger

et al., 1991). Second, while both serotonergic and dopaminergic projections do

diVer in having distinct laminar distributions, they may even diVer from region to

region or even in diVerent primate species (Crino et al., 1993). It is the deep

projections of dopaminergic cells to layer VI of the prefrontal cortex which

appear to be diminished in schizophrenic patients (Akil et al., 1999).

One area of similarity between serotonergic and dopaminergic neurotrans-

mission in the prefrontal cortex and neocortex is both the absence (volume

transmission) and the presence (synaptic transmission) of synaptic specializations

associated neurotransmitter-releasing monoaminergic varicosities. Estimates for

the frequency of synaptic specializations opposite to serotonin varicosities ranges

from 28% to 90% in the rat prefrontal cortex or neocortex (Papadopoulos et al.,

1987; Seguela et al., 1989). In contrast, very few synaptic specializations were

observed opposing serotonergic varicosities in the primate motor-sensory cortex

(DeFelipe and Jones, 1988). These observations of synaptic versus volume trans-

mission may be of particular importance with regard to activation of particular
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monoaminergic neurotransmitters on diVerent cellular compartments when

neurotransmitter release, reuptake, or metabolism is altered.

Interneurons have emerged as a significant target of 5-HT-containing

varicosities for direct synaptic neurotransmission in the primate (Smiley and

Goldman-Rakic, 1996), where only �8% of the postsynaptic shafts opposing

serotonin axons were identified as pyramidal cell dendrites. 5-HT2A receptors

have been localized to large- and medium-sized parvalbumin and calbindin-

containing interneurons that would likely target the perisomatic region of pyra-

midal cells (Jakab and Goldman-Rakic, 1998, 2000). This is striking since the

evidence suggests that most, if not all, cortical pyramidal cells contain 5-HT2A

receptors. In contrast, 5-HT3 receptors are present solely in classes of interneur-

ons that target the dendritic field of pyramidal cells (Jakab and Goldman-Rakic,

2000; Morales et al., 1996).

One eVect of activating 5-HT2A receptor-containing interneurons in the

cortex is to increase spontaneous inhibitory postsynaptic currents (IPSCs)

recorded from pyramidal cells through layers II–VI. In layer V pyramidal

cells, activation of 5-HT2A receptors results in depolarization by an apparent

closure of potassium channels and may also increase a persistent sodium current

(Aghajanian and Marek, 1997; Araneda and Andrade, 1991; Tanaka and North,

1993). Another eVect that is largely restricted to the major output cell of the

prefrontal cortex and neocortex is an enhancement of spontaneous EPSCs which

appears to involve an induction of glutamate release from thalamocortical aVer-
ents (layers I and Va) onto the apical dendritic field of layer V pyramidal cells

(Aghajanian and Marek, 1997; Lambe et al., 2000; Marek et al., 2001). In contrast

to these direct excitatory eVects on diVerent cellular compartments by activation

of 5-HT2A receptor, it should be kept in mind that the predominant eVects of
5-HT in the cortex during electrically evoked potentials is a suppression of

activity that appears to washout quickly when probed using in vitro slice prepara-

tions. This inhibitory eVect on glutamatergic transmission is due at least in part to

activation of 5-HT1B receptors (Aghajanian and Marek, 1999; Read et al., 1994;

Tanaka and North, 1993).

In contrast to the relationship of serotonergic varicosities to synaptic speciali-

zations in interneurons, the major relationship for dopaminergic varicosities to

synaptic specializations appears to be on pyramidal cell dendrites (Goldman-Rakic

et al., 1989; Smiley and Goldman-Rakic, 1993). While some of the dopamine

D1 receptors in the human and monkey prefrontal cortex appear to be in associa-

tion with synaptic specializations on dendritic spines opposite of presumed gluta-

matergic terminals, many dopamine D1 receptors may also have an extrasynaptic

localization in pyramidal cells (Smiley et al., 1994). In contrast to dopamine

D1 and D5 receptors, the dopamine D4 receptor has been localized to GABAergic

interneurons (Mrzljak et al., 1996). The electrophysiological eVects of dopamine
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in the prefrontal cortex have been reviewed elsewhere (Seamans and Yang,

2004).

Groundbreaking studies emphasizing the importance of prefrontal cortical

dopamine in modulating spatial working memory was the finding that depletion

of dopamine in the rat or primate mPFC resulted in deficits approximately as

robust as prefrontal cortical lesions (Brozoski et al., 1979; Simon et al., 1980).

A number of studies since that time especially by Arnsten, Goldman-Rakic, and

colleagues demonstrated that activation of dopamine D1 receptors facilitated

prefrontal cortical executive function in the primate and rodent. Similarly,

activation of dopamine D1 receptors in the mPFC increases the accuracy of rats

performing on a five choice serial reaction time test (5-CSRTT) which measures

attention (Granon et al., 2000). An inverted ‘‘U’’ relationship between D1 recep-

tor stimulation and PFC function exists (Zahrt et al., 1997). Furthermore, en-

hanced dopaminergic function also appears to play a role in the disruption of

working memory in the dorsolateral prefrontal cortex induced by stress (Arnsten

and Goldman-Rakic, 1998).

Evidence also supports the hypothesis that activation and blockade of 5-HT2A

receptors impair and enhance, respectively, working memory tasks for which the

DLPFC is a critical component. The hallucinogen LSD impairs delayed response

and delayed alternation tasks in the rhesus monkey in a fashion consistent with

prefrontal cortical lesions (Frederick et al., 1997; Jarvik and Chorover, 1960).

5-HT2A receptor activation appears to improve the tuning of PFC pyramidal

cells and interneurons in primates performing a well-learned delayed response

task. It was suggested that activation of 5-HT2A receptors would adversely impact

cognition with more demanding tasks (Williams et al., 2002). Accordingly, the

selective 5-HT2A receptor antagonist EMD 281014 enhanced the performance of

both young and aged rhesus monkeys on a delayed response task (Terry et al.,

2005). However, the eVects of LSD appear to be more prominent on time

estimation and motivation, than on short-term memory and attention (Frederick

et al., 1997). Similarly, hallucinogens that selectively activate the 5-HT2 family of

receptors have also been found to have profound eVects on social interaction,

especially aYliative behavior (Schlemmer and Davis, 1986).

Serotonin appears to play a role in a number of aspects of impulsivity as

known from rodent studies and a review of the primate and human literature

where 5-HT levels were decreased either by global lesion of serotonergic neurons

or dietary manipulation (Winstanley et al., 2004a). A number of studies using

systemic administration of phenethylamine hallucinogenic drugs which activate

the 5-HT2 family of receptors or 5-HT receptor antagonists with at a 20- to

80-fold selectivity for 5-HT2A versus 5-HT2C receptors suggest that activation of

5-HT2A impairs impulsivity as reflected in an increased premature responding on

the 5-CSRTT (Carli and Samanin, 1992; Koskinen et al., 2000; Passetti et al.,

2003; Winstanley et al., 2004b). A local eVect in the mPFC for 5-HT2A receptors
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on modulating impulsivity in this task is supported both by the ability of systemic

administration of the selective 5-HT2A receptor antagonist M100907 to prevent

attentional impairment induced by local NMDA receptor blockade or for local

infusion of M100907 itself to decrease premature responding and omissions

(Carli et al., 2004; Winstanley et al., 2003).

Opposing influences of diVerent 5-HT receptor subtypes have also been

found using the 5-CSRTT. For example, in contrast to the improvement in

impulsivity with systemic or local administration of a 5-HT2A receptor antago-

nist, systemic administration of a 5-HT2C receptor antagonist SB 242084 in-

creased impulsivity (Winstanley et al., 2004b). Analogous data has been produced

where a selective 5-HT2A receptor antagonist attenuated the increase in prema-

ture responding induced by NMDA receptor blockade whereas the 5-HT2C

receptor antagonist SB 242084 was without an eVect (Higgins et al., 2003).

However, a 5-HT2B/2C receptor antagonist did not share this eVect with SB

242084 (Talpos et al., 2006). Within the prefrontal cortex, local activation of

5-HT1A receptors also improves visuospatial attention and decreases impulsivity,

though with some diVerences in comparison to local blockade of 5-HT2A recep-

tors (Winstanley et al., 2003). This observation would be consistent with the

hypothesis that activation of 5-HT1A and blockade of 5-HT2A receptors could

have therapeutic eVects for cognitive impairment of schizophrenic patients (Roth

et al., 2004). In contrast to the eVects of 5-HT2A receptor blockade, a 5-HT6

receptor antagonist had no eVect on impulsivity (Talpos et al., 2006). While these

results with 5-HT2A receptor blockade show a consistent eVect on impulsivity as

measured by premature responding on the 5-CSRTT, it should be noted that

5-HT2A receptor antagonists did not counter impulsivity observed for choice

procedures between a small immediate reward versus a larger, delayed reward

(Talpos et al., 2006; Winstanley et al., 2004a).

IX. Animal Models

Two principal unmet medical needs in treating schizophrenic patients is

improving negative symptoms and treating the cognitive impairment associated

with schizophrenia (CIAS). The probability that a novel treatment would treat

both the positive symptoms and cognitive impairment/negative symptoms in the

near future seems remote. The MATRICS and TURNS initiative involving

academia, industry, and the FDA assumes that new treatments targeting cogni-

tive deficits will be added to current antipsychotic drugs (Geyer and Tamminga,

2004). A critical feature in moving toward these new treatment goals is a deeper

appreciation of the neural substrates involved with respect to macrocircuitry

relevant for schizophrenia (thalamocortical-striatal-hippocampal-brain stem).
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An important task of future research is understanding the degree in which

diVerent cognitive enhancement strategies will be compatible with current

antipsychotic drugs (Floresco et al., 2006).

The neonatal excitotoxic hippocampal lesion (ventral hippocampus and

ventral subiculum) is an animal model with evidence of altered dopaminergic

activity in addition to decreased social behavior, impaired working memory, and

enhanced sensitivity to drugs of abuse (Lipska, 2004). A developmental link with

this model is emphasized by the ability of excitotoxic lesions of the mPFC to

block certain behaviors in this syndrome such as hyperlocomotion to novelty and

amphetamine (Lipska et al., 1998). Furthermore, even reversible inactivation

during the neonatal period leads to some of the characteristic dopamine- and

glutamate-mediated changes in pharmacological sensitivity (Lipska, 2004).

An additional key feature with this model is an enhanced sensitivity to the eVects
of NMDA antagonists which imparts additional clinical face validity.

Another developmental model for schizophrenia involves administering the

methylating agent methylazoxymethanol acetate (MAM) on embryonic day 17.

When the rats are tested as adults, they have a number of neuroanatomical

features consistent with the neuropathology of schizophrenia such as size reduc-

tion in the mediodorsal thalamus, hippocampus, and prefrontal cortex and

decreased neuron density without neuron loss in the prefrontal cortex (Moore

et al., 2006). These rats also exhibit a disruption of synaptically driven bistable

membrane potentials in both the prefrontal cortex and the ventral striatum

(Lavin et al., 2005). A remarkable cognitive change in these rats is a deficit in

reversal learning. With respect to the dopaminergic system in the prefrontal

cortex, these rats exhibit a hypofunctional response to topical dopamine while

the deep pyramidal cells are more sensitive to VTA stimulation. At a behavioral

level, adult (but not adolescent) rats exhibit greater sensitivity to the locomotor

activating eVects of amphetamine (Moore et al., 2006).

Since increases in striatal dopamine D2 receptors have been implicated in

the pathophysiology of first-break and medicated schizophrenic patients, mice

have been generated with a reversible increase level of striatal D2 receptors

(Kellendonk et al., 2006). These mice have cognitive deficits in the sphere of

attentional set-shifting and also have decreased dopamine turnover in the

prefrontal cortex that are consistent with altered function in the prefrontal cortex.

Another recent animal model for schizophrenia is a mouse strain with a

dramatically reduced level of the obligate NMDA NR1 receptor subunit. These

mice display reduced locomotor habituation to a novel environment, increased

stereotypic activity, deficits in social interaction, and reduced prepulse inhibition

of acoustic startle (Duncan et al., 2004; Mohn et al., 1999). Another characteristic

of these mice bearing some similarity with schizophrenic patients is an increased

motor stereotypy and reduced fos expression in the medial prefrontal and

cingulate cortex in response to amphetamine (Miyamoto et al., 2004).
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X. Conclusions

A fundamental question in understanding the place of dopamine and seroto-

nin interactions in treating schizophrenic patients will be the extent and ease that

cognitive impairment and negative symptoms/deficit state can be treated by

layering new therapeutics on a base of atypical antipsychotic drugs. Understand-

ing the interactions of dopamine and serotonin with respect to modulating amino

acid neurotransmission in macrocircuits involving the prefrontal cortex, the

striatum, the thalamus, the hippocampus, and the brain stem with the ascending

reticular activating system is a critical feature. Cognitive enhancement by mod-

ulating dopaminergic D1 receptor neurotransmission remains a relatively

untapped direction. Cognitive enhancement with 5-HT1A partial agonists,

5-HT2A antagonists, 5-HT4 partial agonists, and 5-HT6 antagonists would appear

to address these remaining unmet medical needs in schizophrenia. One region of

the brain which would appear to require a greater emphasis would be the thalamus

given the chemical heterogeneity of this anatomical structure and the relatively

understudied components such as the midline and intralaminar thalamic nuclei,

which appear to provide a crucial anatomical node that complements other

thalamic systems which are easier to study such as the mediodorsal nucleus.
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Central cholinergic signaling has long been associated with aspects of memory,

motivation, andmood, each aVected functions in neuropsychiatric disorders such as

schizophrenia. In this chapter, we review evidence related to the core hypothesis that

dysregulation of central cholinergic signaling contributes to the pathophysiology of

schizophrenia. Although central cholinergic circuits are resistant to simplification—

particularly when one tries to parse the contributions of various classes of cholinergic

receptors to disease related phenomena—the potential role of ACh signaling in

Schizophrenia pathophysiology deserves careful consideration for prospective

therapeutics. The established role of cholinergic circuits in attentional tuning is

considered along with recent work on how the patterning of cholinergic activity may

modulate corticostriatal circuits aVected in schizophrenia.

I. Introduction

Cholinergic innervation of cortical and striatal brain areas is extensive and

diVuse, as are both pre- and postsynaptic targets for acetylcholine (ACh) interac-

tion. Receptors for ACh (AChRs) come in two broad classes—ionotropic (nicotinic)

and metabotropic (muscarinic)—each class having multiple subtypes with both

opposing and synergistic actions. Activation of these receptors regulates neuronal

excitability by interaction with pre- and postsynaptically localized ACh-binding

sites. ACh can act as a tonic, diVuse signal,modulating the release of ACh and other

transmitters, including dopamine, glutamate, and GABA. Alternatively, ACh can

exert its eVects via highly localized and directed interactions with neuronal AChRs
to increase or decrease neuronal firing.

The complexity of CNS cholinergic circuits and signalingmechanisms produces

a system in which origins and end results may be easier to appreciate than interven-

ing steps. It is clear that ACh, released from the cholinergic inputs of the basal

forebrain, striatal, and the pontomesencephalic (PM) areas, plays an important role

in supporting neurocognitive and motivational functions of the prefrontal cortical,

hippocampal, and ventral tegmental projections to the striatum (for reviews see

Cragg, 2006; Gotti and Clementi, 2004; chapter by Martin and Freedman, this

volume;Mesulam, 2004; Sarter et al., 2005; Smythies, 2005;Wonnacott et al., 2005).

In addition, there is considerable evidence that events which reduce the amount of

ACh at cholinergic targets may contribute to functional deficits—including deficits

related to schizophrenia (Hyde and Crook, 2001; Sarter et al., 2005; chapter by

Martin and Freedman, this volume). But considerable confusion sets in when one

tries to extract exactly how the intervening steps, with activation of muscarinic and/

or nicotinic receptors and consequent changes in downstream circuits, are

integrated to elicit the broad spectrum of eVects modulated by cholinergic signaling.
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Some of the confusion arises from attempts to reconcile the varying ‘‘anti-

cholinergic’’ properties of antipsychotic medications with data on the eVects of
muscarinic agonists per se. Further confusion arises from the fact that commonly

used cholinergic ligands may be less specific in their binding properties than

previously thought: indeed, some compounds traditionally considered selective

muscarinic antagonists may function as partial agonists or antagonists of other

ACh (nicotinic and muscarinic) receptor subtypes. Finally, schemes that overem-

phasize the role of a particular ACh-signaling pathway to the exclusion of others,

rather than viewing the function of cholinergic circuits as the result of the

summation of actions of ACh at all of its receptors, may do more to confuse

than enlighten. Anatomical and functional data underscore the interaction of

cholinergic circuits with other neurotransmitter systems (Smiley et al., 1999).

Indeed, interaction of ACh with its full panoply of receptor sites elicits substantive

changes in the synaptic transmission of dopamine, glutamate, serotonin, and

GABA in a variety of brain regions.

We will first provide a thumbnail sketch of cholinergic circuits and then

examine how they are involved in functions relevant to schizophrenia with focus

on interactions with dopamine- and glutamate-mediated signaling. We will then

review developmental/genetic, pathological, and pharmacological evidence for

potential cholinergic contributions to schizophrenia. Although cholinergic sig-

naling may not be the major site of circuit dysregulation underlying the etiology

of schizophrenia, more knowledgeable manipulation of cholinergic systems

may provide an untapped reservoir of considerable therapeutic potential in the

treatment of the positive and negative symptoms of this complex disease.

II. ACh in Brain Regions Implicated in Schizophrenia

Central cholinergic circuits participate in aspects of memory formation, moti-

vational and volitional behaviors, and aVect. Each of these functions is altered in

neuropsychiatric disorders, including schizophrenia. Cholinergic neurons in the

CNS make up for any apparent deficit in numbers by projecting to a broad swath

of cerebral cortical mantle, select portions of the temporal lobe, and by their

profuse axonal arborizations throughout the corpus striatum. The schematic

diagram presented in Fig. 1 attempts to bring some order to the cholinergic chaos

by corralling the diverse targets of ACh innervation into a manageable subset of

brain regions strongly implicated in schizophrenia. Our focus is represented in

primary colors: red for cholinergic neuronal groups and a subset of their projec-

tions, and yellow for the chosen cholinoceptive targets—brain regions that have

been examined in detail in recent circuit analyses and that will be the focus of this

chapter. Obviously this degree of simplification endangers the generality of our
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considerations—for example, there is little discussion of cholinergic signaling

in amygdala, or in cingulate or somatosensory cortex—areas of study that have

contributed important progress to our understanding of central cholinergic

coding. Such omissions are not intended to infer relative impact on the field, but

rather reflect the limits of time, space, and comprehension of the authors.

Overall, there are three major groups of cholinergic neurons and interneur-

ons within the primate brain. Cholinergic inputs to prefrontal cortex and hippo-

campus arise primarily from the basal forebrain group, which includes the medial

septal cholinergic neurons, the nucleus basalis of Meynert (nbM) and the preoptic

and diagonal band nuclei (Fig. 1, right). Other contributors to the forebrain ACh

groups are neurons within the substantia innominata and ventral pallidum.

The relative contribution of cholinergic versus noncholinergic neurons to each

of the basal forebrain nuclei ranges from <5% to 90% in human brain, with the

nbM as the highest density forebrain cholinergic nucleus (Mesulam et al., 1984;

reviewed in Hyde and Crook, 2001). Other major targets of the basal forebrain

groups include the amygdala, olfactory bulb, and hypothalamus (Woolf, 1991).

The second major subgroup of ACh-containing neurons (Fig. 1, left), the PM

cholinergic neurons, provides input to brainstem aminergic nuclei (e.g., VTA,
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FIG. 1. Schematic diagram of cholinergic circuits (in red) and their projections within a subset of

key brain regions aVected in SZ. Cholinergic inputs to prefrontal cortex and hippocampus arise

primarily from the basal forebrain group, including the septal cholinergic neurons, the nbM, the

preoptic and diagonal band nuclei. Other contributors to the forebrain ACh group are neurons

within the substantia innonimata and ventral pallidum. The second major subgroup of ACh-

containing neurons, the pontomesencephalic (PM) cholinergic neurons, provides input to brainstem

aminergic nuclei (e.g., VTA, SN, and raphe). Cholinergic interneurons intrinsic to the basal ganglia

are thought to modulate the relative impact of glutamatergic, dopaminergic, and GABAergic circuits

within the ventral striatum. Potential mechanisms of cholinergic regulation of neuronal excitability in

prefrontal cortex and hippocampus are also discussed in the text.
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SN, raphe) as well as to the cerebellum, thalamus, and hypothalamus (Woolf,

1991). In addition, the PM group of neurons project to the basal forebrain

cholinergic neurons, thereby coordinating central cholinergic modulation of

brainstem, midbrain, and forebrain circuits.

The final major group of cholinergic neurons consists of the ACh interneurons

that are intrinsic to the basal ganglia. These intrastriatal neurons modulate the

relative impact of multiple glutamatergic and dopaminergic circuits on the medi-

um spiny GABAergic projection neurons of the striatum: our focus will be on the

role of cholinergic circuits in the regulation of ventral striatal signaling.

A. CHOLINERGIC PATHWAYS WITHIN THE VENTRAL STRIATUM

Cholinergic neurons within the striatum are typically large, aspiny neurons

that comprise 1–5% of the striatal interneurons, varying somewhat with species

and consideration of dorsal versus ventral regions. The extensive arborizations of

the striatal cholinergic interneurons throughout the corpus striatum provide a

tonic level of ACh release, with the ultimate concentration of extracellular ACh

being set (and reset) by the interplay of local ACh release and the activity of the

omnipresent acetylcholinesterase (AChE).

Striatal cholinergic neurons are characterized by their tonic activation pro-

file, and periods of relatively low activity (referred to as ‘‘pauses’’) can be

associated with salience and prediction of reward (Cragg, 2006; Graybiel et al.,

1994). The phasic lulls and peaks of the striatal cholinergic activity, which alters

local ACh and choline concentrations, are influenced by corticostriatal projec-

tions from hippocampal subicular and prefrontal glutamatergic neurons (Fig. 1,

in blue), as well as from amygdala, cingulate, and other cerebral and temporal

cortices (not shown). In the rodent, the bulk of the hippocampal projections to the

nucleus accumbens arise from ventral rather than dorsal hippocampal areas

analogous to the more anterior portions of the primate hippocampus.

Dopaminergic inputs to the ventral striatum arise from the ventral tegmentum

(VTA) and substantia nigra (SN), which themselves are recipients of cholinergic

projections from PM neurons. Activation of a variety of pre- and postsynaptic

dopamine receptors strongly regulates the release of ACh and the excitability

of striatal cholinergic interneurons (Maurice et al., 2004; Wang et al., 2006).

In addition, local circuits of opiate peptide and GABAergic neurons influence

the net levels of striatal cholinergic tone.

Even this, admittedly limited, summary of key regulators of the spatial

and temporal profile of ACh-mediated signaling in striatum reveals consider-

able complexity. Nevertheless, recent progress in dissecting the interaction of

cholinergic circuits with dopaminergic and glutamatergic inputs to the striatum

inspires considerable hope that we may be approaching a bona fide understanding

CHOLINERGIC CIRCUITS AND SIGNALING IN SCHIZOPHRENIA 197



of how ACh works at least in one region that is known to eVect in schizo-

phrenia and that is particularly high in ACh tone (see below and Cragg,

2006; Calabresi et al., 2000; Wilson, 2006; Wonnacott, 2005 for reviews; Wang

et al., 2006).

B. CHOLINERGIC PROJECTIONS IN PREFRONTAL CORTEX AND HIPPOCAMPUS

The principal source of cholinergic input to the PFC and hippocampus is

from the basal forebrain nuclei, with particularly strong contributions from the

medial septum in rodent and from the nbM in human brain. The primate

prefrontal cortex receives a fairly homogeneous cholinergic input with the highest

density of cholinergic marker-positive fibers in layers I, II, and V (Lewis, 1990;

Smiley et al., 1997). Cholinergic axons within the cerebral cortex of human brain

are studded with numerous en passant swellings that serial EM reveals as primarily

asymmetric type synapses. Close appositions of cholinergic synaptic profiles in

cortex (Mesulam, 1999, 2004; Smiley et al., 1997) as well as the prevalence of

cholinergic marker-positive swellings in the vicinity of pyramidal and nonpyr-

amidal neurons in PFC and hippocampus is consistent with proposed modulatory

eVects of ACh on both excitatory and inhibitory cortical circuits (Mansvelder

et al., 2006). Likewise, evidence has accrued that the release of ACh per se is likely

subject to cholinergic, as well as dopaminergic, synaptic tuning in both PFC and

hippocampus (DeBoer et al., 1996; Moore et al., 1999).

III. Physiology of ACh Circuits and Signaling in Brain Regions Implicated
in Schizophrenia Pathology

A. ACh RECEPTORS IN THE CNS

When clinicians and patients contemplate the ‘‘anticholinergic’’ side eVects of
various drugs, they often focus on the diverse and distressing array of peripheral

autonomic cholinergic actions, including alterations in gastrointestinal function,

nausea, and changes in appetite. In fact, the binding sites with which cholinergic

drugs interact in the CNS are just as diverse as those in the periphery and often

more accessible than expected, despite the blood–brain barrier. Any careful

deliberation on ACh-binding sites in the CNS must include ACh-degradative,

synthetic, and transporter proteins, as well as the multimembered muscarinic

and nicotinic receptor subtypes (for reviews see Calabresi et al., 2000; Cobb and

Davies, 2005; Gotti and Clementi, 2004; Mansvelder et al., 2006; Newhouse et al.,

2004; Sarter et al., 2005). Pharmacological agents originally identified for their
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activity as AChE inhibitors (such as physostigmine and galantamine) are now

known to act as partial agonists or antagonists of specific subtypes of CNS nic-

otinic AChRs (nAChRs). The oldest andmost established ‘‘antimuscarinic’’ agent,

atropine, blocks multiple classes of nAChRs at submicromolar concentrations—

well within the clinically relevant and experimentally typical range of doses (Zwart

et al., 1999). Carbamylcholine is more than a muscarinic agonist—it gates deli-

ciously long openings of nAChRs. Finally, the activation of diVerent types of pre-
synaptic nicotinic and muscarinic receptors can facilitate or depress the release of

ACh itself (see below).

Awareness of the complexities in the number and pharmacodiversity

of ACh-binding partners in the CNS is essential to evaluating the past and

present literature on ACh circuits and signaling. Humbling though this may be,

we are actually well positioned to do so: the last 20 years have yielded impressive

advances in understanding the diVerential regulation, expression, targeting, and
function of the many muscarinic (at least 5 genes, so far) and nicotinic (11 subunit

genes) receptors (see below). With this knowledge in hand, we need to reassess

the eVects of the pharmaceuticals we have and work toward the development

of agents that more selectively manipulate the synthesis, release, and binding(s)

of ACh.

A quick primer then, on the most important of ACh-binding sites, from

information largely extracted from the following reviews: Calabresi et al. (2000);

Gotti and Clementi (2004); Laviolette and van der Kooy (2004); MacDermott

et al. (1999); Mansvelder et al. (2006); Sarter and Parikh (2005); Smythies (2005);

Wonnacot et al. (2005).

1. Choline acetyltransferase (ChAT ): This enzyme is responsible for ACh synthesis.

The regulation of ChAT gene expression in the CNS is thought to be coordinated

with that of vAChT, by virtue of a common ‘‘cholinergic locus’’ promoter. However,

the distribution of these two proteins between somatodendritic and axonal domains

may be regulated independently.

2. ACh esterase (AChE): This binds ACh with micromolar aYnity and is

considered the principal degradative activity for ACh. AChE is one of the fastest

turnover rate enzymes identified and is located primarily at intraneuronal and

extracellular sites. Despite its preeminence as ‘‘the AChE,’’ recent work deleting

AChE-encoding genes revealed that butyrylcholinesterase (BuChE) activity,

which is associated with glial cells rather than neurons, can maintain grossly

normal ACh balance. So BuChE is another ACh-binding partner to bear in mind.

3. The vesicular ACh transporter (vAChT ): This binds ACh with submicromolar

aYnity and translocates it into vesicular compartments within cholinergic neurons.

4. Muscarinic (metabotropic) AChRs: At least five genes are identified to date

(M1–M5); M1, M2, and M4 subtypes predominate in the CNS. These

ACh-binding proteins are coupled to a variety of G-proteins resulting in the
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activation or inhibition of an even wider variety of enzymatic and ion channel

targets. Note that in the CNS, only a subset of the muscarinic-binding sites are

postsynaptic; other subtypes of muscarinic receptors are targeted to axonal/

presynaptic sites where they modulate the release of glutamate, dopamine, and

ACh, among other key players.

5. Nicotinic (ionotropic) AChRs: Twelve subunit genes (�2–�10; �2–�4) encode
a group of proteins that are faintly related to—and pharmacologically very

distinct from—the renowned muscle-type nicotinic receptors. Drugs that interact

with subtypes of neuronal nicotinic receptors (e.g., nicotine, hexamethonium)

barely touch the muscle receptor and vice versa. Also important to note is that in

the CNS, nAChRs, just like muscarinic receptors, are targeted to pre- as well as

postsynaptic locations. In fact, the role of presynaptic nicotinic receptors as

modulators of dopamine, glutamate, GABA, serotonin, and ACh release is so

prevalent in the CNS that their contribution as postsynaptic receptors is often

overlooked (but see Frazier et al., 1998; Jones and Yakel, 1997)!

In sum, a circumspect evaluation of how the dysregulation of cholinergic

circuits may be involved in the pathophysiology requires recognition that ACh

targets are many, perhaps not as pharmacologically distinct as previously consid-

ered and at pre-, post-, and perisynaptic locations. Viewing the function of

cholinergic circuits as the result of the summation of actions of ACh at all of its

receptors, although initially daunting, may resolve some apparent conflicts in the

literature and guide the way to new therapeutic approaches (for reviews see

Calabresi et al., 2000; Gotti and Clementi, 2004; Laviolette and van der Kooy,

2004; MacDermott et al., 1999; Mansvelder et al., 2006; Sarter and Parikh, 2005;

Sarter et al., 2005; Smythies, 2005; Wonnacot et al., 2005).

B. PHYSIOLOGY OF ACh CIRCUITS IN STRIATUM

The striatum is established stomping grounds for fans of central cholinergic

circuits and ACh signaling. Although the numbers of cholinergic neurons in

the striatum are small, they are the foremost, if not the exclusive, source of the

high-pack cholinergic inputs in mammalian striatum. As discussed above, striatal

cholinergic neurons are characterized by their large size, aspiny appearance,

and tonic activation profile (hence the names ASpN and TANS neurons; Fig. 2).

Changes in the activity profile of striatal TANS, referred to as ‘‘pauses,’’ are

thought to arise in part from the slowing of autonomous pacemaker activity and

in part to local changes in dopamine, glutamate, and GABA signaling (Cragg,

2006; Maurice et al., 2004; Wang et al., 2006). The association between changes

in striatal cholinergic ‘‘tone’’ and salience/reward prediction has continued to

stoke the fire of physiologists’ interests in the workings of striatal ACh circuits
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(see Cragg, 2006 for review; Apicella, 2002; Maurice et al., 2004; Wang et al.,

2006 for recent highlights).

Perhaps the best studied, although still mechanistically mysterious, role of

cholinergic circuits in striatum is in their reciprocal interactions with dopaminer-

gic inputs from the VTA and SN. Recent studies add new dimensions to prior

evidence that ACh acts as a key regulator of striatal output by influencing the

activity of GABAergic medium spiny neurons (MSpNs, Fig. 2). The newest twist

is that ACh is likely to exert its modulatory control on striatal activity through

interaction with both pre- and postsynaptic, nicotinic and muscarinic receptors

(Fig. 2). Presynaptic nicotinic receptors have long been implicated in the regula-

tion of striatal dopamine release, with reports identifying some of the nAChR

subtypes involved in aspects of nicotine addiction in staggering detail (for review

see Wonnacott et al., 2005; Tapper et al., 2004 for recent highlights). The vague

term ‘‘regulation’’ was intentionally employed because one of the points of contro-

versy has been whether dopamine release in striatum is enhanced or depressed

by nicotine. It turns out that the answer may be both, depending on the

frequency of firing of the dopamine neurons (see Cragg, 2006 for review;

Partridge et al., 2002; Rice and Cragg, 2004; Zhang and Sulzer, 2004; Zhou

et al., 2001). The eVects of dopamine receptor agonists on modulating the release

of ACh in striatum (as well as in PFC and in hippocampus, see below) are also

well established (DeBoer et al., 1996). But new results reveal that depending on

the type and location of the dopaminergic and muscarinic receptors activated, the

net eVect may be to stably enhance or depress the activity of the GABAergic

FIG. 2. Schematic diagram of an aspiny cholinergic neuron (ASpN) and its projections to

convergent sites of glutamatergic and dopaminergic input on striatal GABAergic medium spiny

projection neurons (MSpN). Changes in local [ACh], from pauses in the firing of these TANS,

modulate the net output of the striatum by interactions with ACh receptors and binding sites in pre-,

post-, and perisynaptic compartments.
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MSpNs (Cragg, 2006; Wang et al., 2006; Wilson, 2006;). Indeed, the potential

for mutual tuning of TANS and DANS seems more than flexible enough to

account for the diVerences in valence and timing of all of the synaptic changes

observed in striatum (Calabresi et al., 2000; Cragg, 2006; Maurice et al., 2004;

Wang et al., 2006).

C. PHYSIOLOGY OF ACh CIRCUITS IN PFC AND HIPPOCAMPUS

The role of cholinergic signaling in aspects of memory and cognition are

typically attributed to the broad spectrum of eVects that ACh elicits in altering

the excitability of prefrontal cortical and hippocampal circuits (for reviews see

Albuquerque et al., 1996; Buzsaki, 2002; Levin et al., 2006; Mansvelder et al.,

2006; Newhouse et al., 2004; Picciotto, 2003; Role and Berg, 1996; Sacco et al.,

2004; Sarter et al., 2005; Smythies, 2005; Wonnacott et al., 2005). Analysis of

the pros and cons of the many theories on how ACh actually does what it does

to regulate synaptic eYcacy in these regions, as with striatum, is best served

by considering the potential interaction of ACh with each of its five major sets

of binding partners: ChAT, AChE, VAChT, muscarinic, and nAChRs (see

discussion above).

ACh transmission in cortex and hippocampus likely involves both localized

release and tonic or ‘‘volume’’ transmission (Cobb and Davies, 2005; Vizi and

Kiss, 1998). Activation of presynaptic ACh receptors modulates the release of

glutamate, ACh, and dopamine in PFC and hippocampus (Colgin et al., 2003;

Laplante et al., 2004; Lucas-Meunier et al., 2003), enhancing or depressing trans-

mission depending on the flavor(s) of AChRs expressed (Mansvelder et al., 2006;

Sarter and Parikh, 2005; Wonnacott et al., 2005). Postsynaptic mAChRs and

nAChRs have also been implicated in the modulation of PFC and hippocampal

circuits (Cobb and Davies, 2005; Frazier et al., 1998; Ji et al., 2001; Jones and

Yakel, 1997).

Perhaps the most important (albeit still controversial in detail) role of ACh

circuits in cortex and in hippocampus is in the regulation of theta rhythm

oscillatory activity (Buzsaki, 2002; Calabresi et al., 2000; Cobb and Davies,

2005; Hasselmo, 2005; Lee et al., 2005). Theta-frequency band oscillations

constitute a prominent network pattern in all mammals, including humans.

Theta activity has been proposed to underlie everything from temporal coopera-

tivity of cortical and subcortical networks to coordinate modifications of synaptic

connections within cortex and hippocampus per se (Buzsaki, 2002; Calabresi et al.,

2000; Cobb and Davies, 2005; Hasselmo, 2005). In any case, there is no doubt

that cholinergic circuits, specifically the septal cholinergic projections, play an

essential role in theta oscillations, as selective lesion of the ACh synthesizing

neurons in the medial septal/diagonal band nuclei abolishes hippocampal theta.
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Discrepancies arise in interpretation of studies that manipulate ACh by diVerent
pharmacological means—that is, M1-AChR versus AChE antagonists—which

imply that other types of muscarinic and/or nicotinic AChRs may be involved

(Buzsaki, 2002; Ji et al., 2001).

IV. Developmental and Genetic Deficits in Schizophrenia That May
Influence Function and Assembly of Cholinergic Systems

Schizophrenia is widely viewed as a neurodevelopmental disease, resulting

from a combination of environmental challenges acting on susceptible genotypes.

Significant progress has been made at identifying both relevant environmental

and genetic risk factors (Bresnahan et al., 2005; Harrison and Weinberger, 2005),

although we have yet to make progress at understanding how these factors

interact to dysregulate relevant circuits in the developing brain. The vertebrate

forebrain contains relatively few cholinergic neurons, yet this population exerts

widespread modulatory control over essentially all striatal–cortical networks.

Experimental studies have shown that during development, the cholinergic

system is especially sensitive to environmental insults (e.g., ethanol, lead, orga-

nophosphates, tobacco smoke; Eriksson et al., 2001; Reddy et al., 2003; Robinson,

2002; Thomas et al., 2000). These and other insults would certainly have the

potential to interact with genetic vulnerabilities aVecting brain development to

produce deficits which could contribute to disease states.

A. DEVELOPMENT OF CHOLINERGIC SYSTEMS

Forebrain cholinergic neurons arise early in telencephalic development

(~E10 in mouse which approximately corresponds to gestational day 40 in

humans; Clancy et al., 2001) in the medial ganglionic eminence, a ventricular/

subventricular neurogenic zone that appears as a thickening along the ventral/

medial wall of the ventricle (Brady et al., 1989; Furusho, 2006; Marin et al.,

2000; Olsson et al., 1998; Semba et al., 1988). Presumptive forebrain projection

cholinergic neurons migrate from the MGE (and possibly from the anterior

entopeduncular/preoptic area) radially to take up locations in basal forebrain

nuclei (medial septum, magnocellular nucleus, diagonal band of Broca), whereas

the striatal cholinergic interneurons migrate tangentially from the MGE, occu-

pying dispersed sites throughout the striatal plate. Subsequent to this early birth

and migration from the MGE, 1–2 weeks pass before these neurons undergo

maturation into cholinergic neurons (Aznavour et al., 2005; Berger-Sweeney,

2003; Mechawar and Descarries, 2001). This delay allows time for other popula-

tions of predominantly GABAergic neurons to emerge from the MGE and LGE
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and occupy their appropriate positions throughout the striatum and cortex for

radial population of the neocortex with pyramidal cells and for the proper

targeting of axons from the dorsal thalamus to project through the striatal region

to innervate cortical structures (Flames et al., 2004; Lopez-Bendito et al., 2006;

van Vulpen and van der Kooy, 1998). Some investigators propose that during

this period the presumptive cholinergic neurons provide instructive signals

that guide the targeting and diVerentiation of later born striatal populations

(Berger-Sweeney, 2003; Hohmann, 2003; Hohmann and Berger-Sweeney, 1998).

During the first two postnatal weeks, the cholinergic interneurons elaborate

robust networks of axons locally within the striatum, whereas the forebrain

cholinergic neurons elaborate a wide array of axonal projections that target all

neocortical regions (prefrontal, sensory, and motor) and the hippocampal forma-

tion. As a result these two relatively small populations of cholinergic neurons

maximize their ability to interact with striatal–cortical networks. It is likely that

the delay between the migration of newly formed cholinergic neurons from

neurogenic zones and the elaboration of axonal projections plays a critical role

in properly controlling the final wiring of the forebrain cholinergic system.

A number of recent studies using molecular genetic approaches in mice are

beginning to clarify the developmental processes that determine the specification

of forebrain cholinergic neurons. In particular, the basics of a cholinergic tran-

scription factor code are emerging. A variety of experimental approaches has

demonstrated that expression of several transcription factors is important (Mash 1,

Olig2, Lmx7, Lmx8) or essential (Nkx2.1) for generating forebrain cholinergic

neurons (Bachy and Retaux, 2006; Furusho et al., 2006; Marin et al., 2000; Mori

et al., 2004; Zhao et al., 2003). Thus, the combined expression of these factors,

and their target genes, probably accounts for much of the intrinsic identity of the

cholinergic phenotype. However, these studies have not yet distinguished be-

tween factors that determine how a newborn cholinergic neuron migrates from

the MGE (radially into basal septal regions or tangentially into the striatum), or

whether an individual cholinergic neuron will elaborate a spatially restricted

axonal network, as is the case of the striatal interneurons, or a broadly targeted

set of cortical projections.

B. POTENTIAL ROLE OF NEUREGULIN 1

Neuregulin 1–ErbB signaling plays multiple critical roles in proper develop-

ment of the neocortex, guiding both the tangential migration of MGE-derived

GABAergic interneurons (Flames et al., 2004) and proper navigation of axonal

projections from the dorsal thalamus into the cortex (Lopez-Bendito et al., 2006).

Whether neuregulin also guides the migration and/or axon projections of

forebrain cholinergic neurons is not known. We have seen apparent decreases
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in the numbers of specific populations of forebrain interneurons in adult mice

that are heterozygous for an isoform specific, targeted mutation in the neur-

egulin 1 gene (Wolpowitz et al., 2000; Johnson, Talmage, and Role, Unpublished

data).

Maturation and maintenance of cholinergic neurons depends on a number of

extracellular signaling molecules. Of particular relevance to our discussion

of cholinergic signaling and schizophrenia are nerve growth factor (NGF),

brain-derived neurotrophic factor (BDNF), and cortical steroids. NGF, BDNF,

and glucocorticoids regulate the expression of ChAT, enhance the connectivity

of, and promote the survival of cholinergic neurons (Fagan et al., 1997; Grosse

et al., 2005; Guijarro et al., 2006; Johnston et al., 1987; Mobley et al., 1986; Phillips

et al., 2004; Sofroniew et al., 2001; Takahashi, 1998; Takahashi and Goh, 1998;

Ward and Hagg, 2000). Reports have demonstrated altered regulation of NGF

(Parikh et al., 2003), BDNF (Weickert et al., 2003, 2005), and the HPA axis

(Corcoran et al., 2001, 2003) in schizophrenics. Whether these changes alter

corticostriatal cholinergic tone remains to be seen.

Beyond general eVects on synaptic structures, there is no clear evidence linking
the products of identified schizophrenia susceptibility genes with the cholinergic

system, with the notable exception of the neuregulin 1 gene. Neuregulin 1 has

been linked to schizophrenia in multiple populations, and disease-associated

changes in the relative expression of diVerent neuregulin 1 isoforms is seen in

the DFPLC and hippocampus. Neuregulin 1 isoforms play important roles in

neurodevelopment, in particular in the patterning of the neocortex (Flames et al.,

2004; Lopez-Bendito et al., 2006). At present, these latter roles for neuregulin 1

have focused on tangential migration of cortical interneurons and axonal projec-

tions from the dorsal thalamus to the neocortex. Given the relative spatial and

temporal parallels between these events (GABAergic interneurons originate in the

MGE during an overlapping time frame with the striatal cholinergic interneurons)

and the reported decreases in the numbers of ventral striatal cholinergic inter-

neurons in postmortem tissue from schizophrenics, it is important that studies of

the role of neuregulin 1 in forebrain development be extended to the cholinergic

system as well.

A more direct association between neuregulin 1 and cholinergic signaling

exists at the level of the expression of the nAChRs. Two families of neuregulin 1

isoforms were identified originally by virtue of their ability to regulate the

expression of nAChRs at peripheral synapses (Falls et al., 1993; Yang et al.,

1998). Subsequently, a number of investigators have demonstrated that neure-

gulin also can increase the synaptic expression of �7-containing nAChRs at

central synapses (Kawai et al., 2002; Liu et al., 2001), and our laboratories have

extended this story by demonstrating that neuregulin 1 signaling also regulates

presynaptic expression and targeting of the �7 nAChRs (Role and Talmage,

unpublished). These latter studies are particularly intriguing in light of the
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well-documented deficits in �7 nAChRs in schizophrenics, the association of this

deficit with defects in P50 measures of auditory gating in schizophrenics and their

first degree relatives, and the association of �7 subunit gene promoter poly-

morphisms with these deficits (see chapter by Martin and Freedman, this volume;

Leonard et al., 1996, 2002).

V. Clinical and Preclinical Evidence for Deficits in Components of
Brain Cholinergic Systems in Schizophrenia

There are numerous examples of deficits in components of brain cholinergic

systems that have been linked with schizophrenia. They range from abnormal

expression of receptors of various subtypes through decreases in cholinergic

neurons in key areas.

A. DEFICITS IN COMPONENTS OF MUSCARINIC CHOLINERGIC TRANSMISSION

Several studies give evidence of alteration of muscarinic ACh receptors in the

brains of schizophrenics. The majority of evidence in this realm points to decre-

ments in binding suggestive of a decrease in available m1 muscarinic-binding

sites in prefrontal cortex and hippocampus.

Using [(123)I ]IQNB SPECT, one group found decreased muscarinic recep-

tor availability in unmedicated patients with schizophrenia as compared to

controls in a variety of cortical and subcortical brain regions (Raedler et al.,

2003). Another group used GTP-�S binding to distinguish M2 and M3 musca-

rinic receptors and found no change in postmortem cortex from patients with

schizophrenia as compared to controls, while finding a reduction in M1 (Scarr

et al., 2006). Other groups have found decreased pirenzapine binding in the

hippocampus in brains of patients with schizophrenia (Crook et al., 2000) and

decreased M1 receptor mRNA in dorsolateral prefrontal cortex (Dean et al.,

2002) but not caudate nucleus (Dean et al., 2000).

At the level of genetic findings, there is evidence for linkage of an M1

polymorphism to decreased performance on the Wisonsin Card Sort Test (Liao

et al., 2003). In addition, there is evidence that an M5 polymorphism confers

susceptibility to schizophrenia. Interestingly, the M5 variant seems to confer risk

only in combination with a nicotinic a7 polymorphism (De Luca et al., 2004).

Finally, it has been reported that circulating antibodies to the M1 receptor

can be identified in the serum of some schizophrenic patients. These antibodies
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displace tritiated pirenzapine and have agonist-like properties at the M1 receptor

in in vitro assays (Borda et al., 2002).

B. DEFICITS IN COMPONENTS OF NICOTINIC CHOLINERGIC TRANSMISSION

There is also ample evidence of alterations of nAChRs in the brains of

patients with schizophrenia. The most notable set of findings pertains to decre-

ments in �7-containing nAChRs and their function in sensory gating. These

studies are dealt with in detail in the subsequent chapter byMartin and Freedman,

this volume.

Apart from the well-defined case of �7-containing nicotinic receptors, more

global changes in nicotinic cholinergic receptors have been observed as well. One

group observed decreased high-aYnity nicotine and epibatidine binding in post-

mortem brains from patients with schizophrenia as compared to controls (Breese

et al., 2000). The diVerences were seen in hippocampus, cortex, and caudate in

the subgroup of patients versus controls who smoked. The same group reported

increases in receptor sites in nicotine and haldol treated rats (Breese et al.,

2000). However, another group found elevation of nicotine binding in the

striatum of patients with schizophrenia (Court et al., 2000) and minimal changes

in a-bungarotoxin binding in the thalamus (Court et al., 1999).

C. DEFICITS IN CHOLINERGIC INNERVATION

Besides decrements in receptors for ACh, one group has observed a reduction

in numbers of cholinergic interneurons in the ventral striatum (Holt et al., 1999,

2005), but not in other striatal regions. However, cortical cholinesterase and

ChAT activity is not reduced in the brains of patients with schizophrenia

(Haroutunian et al., 1994).

D. SUMMARY

There are numerous findings of abnormalities in the expression or distribu-

tion of many components of cholinergic systems in the brains of patients with

schizophrenia, the bulk of which would be expected to lead to decrements in

cholinergic neurotransmission. It is unclear whether all of these are primary

deficits or in some cases downstream eVects of other lesions. At least some

cholinergic deficits may have to interact with deficits in other systems in order

to confer disease vulnerability. However, despite these uncertainties, the prepon-

derance of evidence points toward possible roles for abnormalities in cholinergic

systems participating in the pathophysiology of schizophrenia.
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VI. Evidence for Cholinergic Contributions to Schizophrenia Pathophysiology
from Clinical and Preclinical Psychopharmacology

Correlation of the eYcacy of medications used to treat target symptoms of

schizophrenia with eVects of those medications on cholinergic systems has been

another way in which investigators have attempted to infer potential roles for

cholinergic systems in the pathophysiology of schizophrenia. The complex

receptor-binding properties of antipsychotic medications and complex relation-

ships of target symptoms andmedication side eVects have made it diYcult to make

such inferences in a clear and convincing way. That said, there seems to be ample

evidence that well-chosen cholinergic targets have potential to be therapeutic

targets.

A. ACh RELEASE, MUSCARINIC BLOCKADE, PARTIAL AGONISTS,

AND ‘‘ATYPICALITY’’

Preclinical studies have demonstrated that many antipsychotic medications

cause the release of ACh in cortical (Ichikawa et al., 2002; Li et al., 2005) and

hippocampal regions ( Johnson et al., 2005; Shirazi-Southall et al., 2002). While a

broad range of antipsychotic medications have been shown to release cortical and

hippocampal ACh, olanzapine and clozapine have been shown to be especially

potent in this regard. Interestingly, these are the two antipsychotic medications

which seem to have greater eYcacy against a broader range of symptoms than other

antipsychotic medications (Kane et al., 1988, 2001; Lieberman et al., 2003, 2005).

To some extent, antipsychotic-induced release of cortical ACh correlates with

M2 binding aYnity; antipsychotic medications with less M2 binding tend to be

less potent inducers of cortical ACh release ( Johnson et al., 2005). Observations

such as these combined with the observation that both clozapine and olanzapine

bind muscarinic receptors with high aYnity have led to the idea that anticholin-

ergic properties of antipsychotic medications might be responsible for ACh

release, and further might be correlated with ‘‘atypicality.’’ This scenario is

plausible in that muscarinic receptors can serve as inhibitory presynaptic auto-

receptors, providing a potential mechanism by which their blockade could

augment ACh release.

However, olanzapine and clozapine may be only weakly antimuscarinic at

the level of clinical symptoms, with fewer anticholinergic side eVects than ex-

pected based on their potent in vitro displacement of muscarinic ligands (Bymaster

et al., 1996). This discrepancy is likely due both to subtype selectivity at musca-

rinic sites, and to partial agonist activity at M4 and M2 receptors (Bymaster et al.,

2003; Michal et al., 1999).
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Interestingly, clozapine has cognition impairing properties in mice, but the

eVect is complex, in that clozapine reduces scopolamine-induced impairment

while its direct eVects on cognition are reversed by cholinesterase inhibitors. This

pattern of reduction of antagonist eVects and reversal by treatments that increase

the endogenous ligand is highly suggestive of partial agonist eVects (Ninan and

Kulkarni, 1996) or of interaction of ACh with other types of muscarinic and/or

nicotinic receptors (see above). Of note, at least two other compounds, xanome-

line (reviewed in Mirza et al., 2003) and PTAC (Bymaster et al., 1999), show

antipsychotic-like activity in animal models and are also partial agonists at M4

and M2 receptors.

A further wrinkle in this data is introduced by the fact that both clozapine and

olanzapine still release cortical and hippocampal ACh in mice lackingM2 andM4

receptors (Bymaster et al., 2003). As such, neither blockade nor partial agonism

at these sites appears to be required for ACh release. In view of recent studies

implicating both presynaptic nicotinic and dopamine receptors in the modulation

of ACh release, the potential contribution of these pathways to the eVects of

clozapine and olanzapine should, perhaps, be considered.

B. BOTH PROCHOLINERGIC AND ANTICHOLINERGIC COMPOUNDS MAY

AMELIORATE OR WORSEN DIFFERENT SYMPTOM DOMAINS

Adding further to confusion about the role of cholinergic transmission in

schizophrenia, muscarinic agonists and antagonists exert opposing eVects on

various schizophrenia symptom clusters. There has been extensive interest in

this area because of the use of medications with ‘‘anticholinergic’’ properties as

antipsychotics (e.g., chlorpromazine, perphenazine) and because of the use of

medications such as benztropine and biperiden to counter the parkinsonian side

eVects of traditional neuroleptic antipsychotics. For some time, the prevailing

opinion seems to have been that anticholinergic eVects were fairly neutral in

relation to symptoms of schizophrenia, but closer examination has revealed a

more complicated picture.

Several studies showed some increase in positive symptoms (hallucinations

and delusions) when anticholinergic medications were added to neuroleptics. In

a placebo-controlled trial, procyclidine or placebo was added to flupenthixol in a

group of 36 patients, with the subsequent finding that those receiving procyclidine

had more positive symptoms than those receiving placebo ( Johnstone et al., 1983).

Another study compared symptoms in 47 patients receiving neuroleptics during

periods with and without treatment with benztropine or trihexyphenidyl. Again, the

anticholinergic medication was associated with an increase in positive symptoms

(Singh et al., 1987). A study showed that biperiden increased positive symptoms

in a small group of schizophrenic patients when added during a medication free
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period, strengthening the case that the symptomatic worsening is a direct anticho-

linergic eVect rather than one that depends on interaction with the eVects of other
medications (Tandon et al., 1991).

Anticholinergic compounds such as benztropine have been shown to cause

memory impairment (Brebion et al., 2004; Tune et al., 1982). In one small study,

higher serum anticholinergic levels correlated with worsened recall but improved

reaction time (Strauss et al., 1990). It is possible that improvements in reaction

time represent an anti-parkinsonian eVect as all patients in the study were taking

antipsychotic medications. In another study, single injections of benztropine or

glycopyrrolate impaired free recall (McEvoy and Freter, 1989). Overall, it ap-

pears likely that anticholinergic medications could worsen some cognitive deficits

in schizophrenia.

At the same time, there is a small body of evidence showing that anticholin-

ergic may decrease some negative symptoms in schizophrenia. This provides an

instance in which the domain of cognitive symptoms and the domain of negative

symptoms can be separated from one another in part based on how they are aVected
by pharmacological treatment.

In one study, treatment of a small number of patients with trihexyphenidyl

resulted in decreases in aVective flattening, avolition, and anhedonia/asociality

(Tandon et al., 1992). In another study by the same group, biperiden also reduced

negative symptoms (while increasing positive symptoms; Tandon et al., 1991).

Abuse of trihexyphenidyl and benztropine has at times been cited as ‘‘self-

medication’’ of negative symptoms by patients with schizophrenia, and indeed

in one study those who abused these medications tended to have higher Brief

Psychiatric Rating Scale (BPRS) scores and more negative symptoms than those

who did not abuse anticholinergic medications (Zemishlany et al., 1996).

One might speculate that actions of anticholinergic medications against

negative symptoms reflect activity in psychomotor circuits that are parallel in

some way to the motor circuits in which anticholinergic medications oppose the

parkinsonian actions of neuroleptics.

Conversely, muscarinic agonists have been proposed to have antipsychotic

activity and may have potential eVects against positive symptoms with particular

attention paid to the compound xanomeline (reviewed in Bymaster et al., 2002,

2003).

Recent findings on the function of muscarinic receptors in the striatum may

shed some light on these apparent paradoxes. The recent paper by Wang and

coworkers (also discussed in Section III.B of this chapter) shows that D2 dopa-

mine receptors serve to inactivate striatal cholinergic interneurons which signal to

M1 muscarinic receptors on MSpNs. In essence, muscarinic stimulation and

blockade of dopamine are functional equivalents in this circuit. The muscarinic

receptors reduce intracellular calcium in the MSpNs, which in turn reduces the

production of endocannabinoids, reducing depolarization induced suppression
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and long-term depression of neurotransmission. In summary, cholinergic activa-

tion in this circuit results in more activity of MSpNs in the indirect pathway—

and subsequently less release of inhibition of the corticostriatal pathways that

may convert drives and feelings into actions and perceptions. One might predict

that this action would reduce positive symptoms in schizophrenia in a manner

analogous to that of D2 blockade by neuroleptics, but one might also predict that

in some components of these pathways, the same set of actions could result in an

increase in negative symptoms (Wang et al., 2006).

While far from clear, the body of evidence on eVects of muscarinic agonists

and antagonists in schizophrenia, and on the cholinergic binding properties of

antipsychotic medications seems to point to a complex role for cholinergic

transmission in diVerent domains of psychopathology with loci of action in the

brain likely to depend on the specific symptom domain examined. A challenge to

neuropyschopharmacologists will be to find ways to balance and dissociate

beneficial and harmful eVects of blocking and enhancing cholinergic transmission

at muscarinic receptors.

C. NICOTINE AMELIORATES A WIDE RANGE OF DEFICITS SEEN IN SCHIZOPHRENIA

A large part of the pharmacological evidence pointing to potential cholinergic

roles in schizophrenia pathophysiology concerns salutary eVects of nicotine in

patients with schizophrenia. Nicotine aVects a wide range of symptom domains

and neuropsychological findings. We will give a broad sampling of the data here,

and refer the reader to the subsequent chapter by Martin and Freedman, this

volume, for an in-depth review of data on nicotinic receptors and the processing

of sensory information in schizophrenia.

Nicotine has been shown to improve abnormalities in smooth pursuit eye

movement and saccades during visual tracking (Avila et al., 2003; Depatie et al.,

2002; Larrison-Faucher et al., 2004; Sherr et al., 2002). The improvement in

saccades was independent of the smoking status of the patients, thus addressing

the possibility that nicotine’s eVect resulted directly from the elevated incidence of

smoking by people with schizophrenia. Nicotine also improved sustained atten-

tion in these visual tasks (Avila et al., 2003; Depatie et al., 2002). The eVects of
nicotine on performance of visual tracking and tasks of visual attention may

involve hippocampus and cingulate gyrus (Levin et al., 2006; Newhouse et al.,

2004; Tanabe et al., 2006).

In another domain, nicotine improved performance of tasks involving

working memory in schizophrenic subjects, enhancing task-related activation of

thalamus and anterior cingulated cortex as seen on fMRI ( Jacobsen et al., 2004).

Nicotine has also been shown to reverse haloperidol-induced impair-

ments in reaction time and working memory (Levin et al., 1996). Nicotine nasal
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spray improved delayed recognition and spatial working memory in schizophren-

ic patients (Myers et al., 2004; Smith et al., 2006). Interestingly, nicotine may

actually impair working memory in otherwise healthy smokers (Park et al., 2000)

suggesting an inherent diVerence in nicotine responses in the brains of

persons with schizophrenia (discussed in Mansvelder et al., 2006; Newhouse

et al., 2004).

While numerous studies show beneficial eVects of administered nicotine in

schizophrenia, the reverse is not true, that is to say, nicotine withdrawal did not

increase positive symptoms in a group of patients with schizophrenia who quit

smoking. Increases in negative symptoms were modest and transient (Dalack

et al., 1999). In considering these results, it may be important to take into account

that the frequent high peaks of nicotine delivered by smoking may not be of

sustained therapeutic benefit as compared to other systems of delivery.

Finally, the fairly extensive data on sensory processing and nicotine is perhaps

the best pharmacological evidence for a role of cholinergic systems in schizo-

phrenia. It is made stronger by the linkage of a polymorphism in the �7 nicotinic
receptor subunit gene to sensory gating deficits in patients with schizophrenia

and their relatives (Freedman et al., 2003; see chapter by Martin and Freedman,

this volume). This topic is reviewed in detail in the subsequent chapter by Martin

and Freedman, this volume. Overall, and in contrast to the data on muscarinic

AChRs, evidence to date strongly supports the notion that treatments that

interact with nAChRs have almost uniformly ameliorative eVects on symptoms

of schizophrenia.

D. DESPITE CLEAR EFFECTS OF OTHER CHOLINERGIC COMPOUNDS,

CHOLINESTERASE INHIBITORS ARE NOT PROVEN ADJUNCTS IN THE

TREATMENT OF SCHIZOPHRENIA

Further pharmacological evidence concerning cholinergic participation in

the pathophysiology of schizophrenia comes from studies in which patients were

treated with medications from the family of AChE inhibitors which were initially

developed to treat Alzheimer’s disease (Coyle and Kershaw, 2001; Crismon,

1994; Dooley and Lamb, 2000; Jann, 2000). The eVects of these medications in

patients with schizophrenia are equivocal at best.

There are several case reports describing improvement in negative and

cognitive symptoms of individual patients with cholinesterase inhibitors (Rosse

and Deutsch, 2002, using galantamine). There are some positive open label trials

of rivastigmine (Lenzi et al., 2003; Mendelsohn et al., 2004) in which patients show

improvements on standard-rating scales such as Positive and Negative Symptom
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Scale (PAANS) or BPRS. The study by Lenzi et al. (2003) was focused on quality

of life measures. The study by Mendelsohn et al. (2004) was limited to patients

with comorbid dementia, so it may be diYcult to generalize the result to the

schizophrenic population as a whole.

Some positive findings involving cholinesterase inhibitors were in studies that

focused on a specific neurocognitive endophenotype rather than on clinical

outcome as a whole. One group found that donepezil normalized fMRI findings

on a verbal fluency task (Nahas et al., 2003) and another group found that

rivastigmine improved performance on a sustained attention task (Aasen et al.,

2005).

On the negative side, several reports of placebo-controlled, double-blind

crossover trials of donepezil show no eYcacy against symptoms of schizophrenia.

These studies were all done using donepezil as a neuroleptic augmentation

treatment. Some (Mazeh et al., 2006; Stryjer et al., 2003) were in elderly patients

or patients with known comorbid dementia. Others were in a general population

of stable schizophrenic patients (Friedman et al., 2002; Stryjer et al., 2004; Tugal

et al., 2004). No eVects were seen on positive, negative, or cognitive symptoms.

All of the studies were fairly small, and in some cases there is concern about

potential confounding eVects of concurrent nicotine use by patients.

Overall, at this time there is little evidence to suggest significant benefits of

cholinesterase inhibitors in schizophrenia, especially to patients who do not suVer
from comorbid dementia. In some respects, given what we have outlined about

the complexity of cholinergic systems, it is not surprising that a class of medica-

tions which brings about global increases in ACh levels would have modest

eVects; in many brain locations, presynaptic inhibition of release may compen-

sate for decreased degradation when ACh levels rise. Thus, given the evidence of

eVects of treatments targeting nicotinic and muscarinic receptors, it would seem

unwarranted to view the modest eVects of cholinesterase inhibitors as evidence

against participation of cholinergic systems in schizophrenia pathophysiology.

VII. Conclusions

Proper function of cholinergic systems in the brain is essential for a variety of

neurocognitive tasks that are impaired in schizophrenia including attention,

volition, working memory, assignment of salience, and the processing of sensory

information.

While it is unlikely that cholinergic deficits alone account for any particular

symptom domain in schizophrenia, there is ample evidence that schizophrenia is
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associated with genetic changes and brain abnormalities that can influence both

the development and function of cholinergic systems, and that interaction of

cholinergic deficits with deficits in other systems has the potential to produce

disease symptoms.

Perhaps the clearest case of a cholinergic deficit is that of abnormality in the

control of a7 nicotinic receptor expression conferring deficits in sensory gating

and vulnerability to schizophrenia (cf chapter by Martin and Freedman, this

volume). However, it is likely that nicotine has other important sites of action

relating to schizophrenia, and that muscarinic eVects on corticostriatal and other

circuits are of independent import.

Inferences made from clinical and preclinical psychopharmacological data

about the performance of cholinergic systems in schizophrenia are fraught with

diYculty and do not point to a simple dysregulation of cholinergic transmission at

a single brain location. Rather, there are numerous points where dysfunction of

particular components of cholinergic signaling can contribute to symptoms or

where medications can ameliorate (or worsen) symptoms regardless of an intrinsic

cholinergic deficit. In some instances, these points are uncomfortably close to one

another and the eVects of cholinergic signaling may be arrayed in opposite direc-

tions. In other instances, manipulation of cholinergic systems at one site may be

undone by eVects of the same manipulation at a distant site. The challenge

for neurobiologists and pyschopharmacologists is to find ways to refine our inter-

ventions in this complex system and to develop compounds or combinations of

compounds which can target sites of interest, without substituting one set of

impairments for another.
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In addition to the devastating symptoms of psychosis, many people with

schizophrenia also suVer from cognitive impairment. These cognitive symptoms

lead tomarked dysfunction and can impact employability, treatment adherence, and

social skills. Deficits in P50 auditory gating are associated with attentional

impairment andmay contribute to cognitive symptoms and perceptual disturbances.

This nicotinic cholinergic-mediated inhibitory process represents a potential new

target for therapeutic intervention in schizophrenia. This chapter will review

evidence implicating the nicotinic cholinergic, and specifically, the �7 nicotinic

receptor system in the pathology of schizophrenia. Impaired auditory sensory

gating has been linked to the�7 nicotinic receptor gene on the chromosome 15q14

locus. A majority of persons with schizophrenia are heavy smokers. Although

nicotine can acutely reverse diminished auditory sensory gating in people with

schizophrenia, this eVect is lost on a chronic basis due to receptor desensitization.

The�7 nicotinic agonist 3-(2,4 dimethoxy)benzylidene-anabaseine (DMXBA) can

also enhance auditory sensory gating in animal models. DMXBA is well tolerated

in humans and a new study in persons with schizophrenia has found that DMXBA

enhances both P50 auditory gating and cognition. �7 Nicotinic acetylcholine

receptor agonists appear to be viable candidates for the treatment of cognitive

disturbances in schizophrenia.
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I. Introduction

In addition to the more obvious symptoms of hallucinations and delusions,

people with schizophrenia frequently suVer from cognitive symptoms such as the

inability to focus attention. This results in a ‘‘flooding’’ with extraneous sensory

stimuli which overwhelms the person’s ability to think coherently (Venables,

1992). Poor cognitive functioning contributes to both poor role-functioning and

high costs of care through its association with activities of daily living, productivity,

rate of inpatient hospitalization and outpatient utilization, independence, train-

ability/education levels, employability, and the lost productivity of family mem-

bers spent caring for their ill relatives (reviewed in Sevy and Davidson, 1995).

Cognitive impairment also contributes to poor medication adherence ( Jeste et al.,

2003) and limits the eYcacy of rehabilitative therapies (reviewed in Sharma and

Antonova, 2003). Cognitive deficits improve slightly with current antipsychotic

medications, but they are not normalized and therefore remain a target for new

treatment eVorts (Weickert et al., 2003). Given increasing evidence for a role of the

nicotinic cholinergic system’s role in the cognitive symptoms of schizophrenia,

the �7 nicotinic acetylcholine receptor has been proposed as a candidate for the

development of medications specifically targeting cognitive deficits in schizo-

phrenia (Martin et al., 2004). This chapter will review the neurobiological findings

that led to the development of this promising new drug treatment for schizo-

phrenia as well as new evidence for the beneficial eVect of an �7 nicotinic receptor
agonist on cognitive impairment in schizophrenia.

II. Neurobiological and Neurogenetic Evidence for a Link Between the a7 Nicotinic
Acetylcholine Receptor and Schizophrenia

Sensory gating, measured using the P50 auditory-evoked response, is im-

paired in persons with schizophrenia (Adler et al., 1985). The P50 auditory-

evoked response occurs 40–75 ms following an auditory stimulus. When a second

auditory stimulus is presented in close proximity (500 ms), the P50 auditory-

evoked response to the second stimulus is diminished, which is evidence for the

activity of an inhibitory process. This impairment has been replicated in multiple

independent laboratories (Boutros et al., 1991; Clementz et al., 1997; Judd et al.,

1992; Louchart-de la Chapelle et al., 2005; Ward et al., 1996) and is present by the

first episode of psychosis (Yee et al., 1998). This inhibitory failure is associated with

poor sustained attention, as measured by diminished performance on the Digit

Vigilance Test and other tests of attentional dysfunction (Cullum et al., 1993; Yee

et al., 1998).
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Evidence for the role of the �7 nicotinic acetylcholine receptor in auditory

gating was initially established usingmultiple animal models. The auditory-evoked

response of hippocampal CA3 pyramidal neurons in the rat, the P20-N40 field

potential, parallels the properties of the human P50 auditory-evoked response.

The �7 nicotinic receptor antagonist �-bungarotoxin disrupts P20-N40 gating,

while the nicotinic receptor channel blocker mecamylamine and the muscarinic

antagonist scopolamine have no eVect on P20-N40 gating (Luntz-Leybman

et al., 1992). The DBA/2 strain of mice has genetically decreased levels of �7
nicotinic receptors in the CA3 region and impaired auditory gating (Stevens

et al., 1996). Finally, nicotine restores auditory gating in fimbria-fornix lesioned

rats with impaired auditory gating due to the loss of cholinergic innervation to the

hippocampus (Bickford and Wear, 1995).

�7 Nicotinic receptors mediate this inhibitory processing by enhancing the

release of gama-aminobutyric acid (GABA) from GABAergic interneurons via a

postsynaptic, calcium-dependent mechanism (Albuquerque et al., 1998; Frazier

et al., 1998). Nitric oxide prolongs this eVect through a second messenger system

(Adams et al., 2000). This enhanced release of GABA stimulates GABAB recep-

tors which in turn decreases the release of glutamate (Hershman et al., 1995). This

eVect is thought to prevent hippocampal neurons from responding to the second

stimulus in the auditory gating paradigm. These nicotinic receptor-mediated

interactions between inhibitory (GABA) and excitatory (glutamate) neurons are

also proposed to play a role in the eYciency and patterning of neuronal func-

tioning within the hippocampus and cortex (Albuquerque et al., 2000; Alkondon

et al., 2000; Ji and Dani, 2000; Jones et al., 1999).

A parallel series of studies in humans also implicated the �7 nicotinic

acetylcholine receptor in the physiology of P50 auditory gating. Nicotine gum

and physostigmine were found to improve gating in the relatives of persons

with schizophrenia who also had impaired auditory gating (Adler et al., 1992).

The study of this group of relatives was especially useful as it was able to avoid the

confounds of the additional pathological eVects of schizophrenia, the eVects of
chronic neuroleptic treatment as well as the eVects of chronic smoking on

nicotinic receptor levels. These findings were extended to persons with schizo-

phrenia (Adler et al., 1993). Next, mecamylamine was administered with nicotine

at a dose which blocks �4/�2 receptors. Mecamylamine did not attenuate the

nicotine induced enhancement of auditory gating. Therefore, the �7 nicotinic

receptor appears to be the primary cholinergic receptor responsible for P50

auditory gating in humans as well (Freedman et al., 1994).

In addition to the �7-mediated deficits in P50 auditory gating, people with

schizophrenia also have abnormalities in the expression of central nervous sy-

stem nicotinic receptors. Decreased �7 nicotinic receptor binding has been noted

in the reticular nucleus of the thalamus (Court et al., 1999), the hippo-

campus (Freedman et al., 1995), and the cingulate cortex (Marutle et al., 2001).
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Reduced�7 subunit levels have beennoted in frontal lobe regions (Guan et al., 1999),

including the dorsolateral prefrontal cortex (Martin-Ruiz et al., 2003). Reduced

levels of mRNA are also seen in peripheral blood lymphocytes (Perl et al., 2003).

The relatives of persons with schizophrenia also have poor P50 auditory

gating (Clementz et al., 1998; Ross et al., 1999; Siegal et al., 1984), consistent with

a genetically determined trait (Waldo et al., 1991). An initial genome scan using

poor P50 auditory gating as a phenotype gave only suggestive results at several

chromosomes (Coon et al., 1993). Following the identification of genetic markers

specific to the �7 nicotinic acetylcholine receptor gene (CHRNA-7) at 15q13–14

(Chini et al., 1994), P50 auditory gating was linked to the chromosome 15q14

locus of CHRNA-7 (Freedman et al., 1997). Families from the NIMH Schizo-

phrenia Genetics Initiative database have since been utilized to find linkage to the

diagnosis of schizophrenia itself (Leonard et al., 1998). Since that time, replica-

tions of these findings have occurred in North American families of African

descent (Kaufmann et al., 1998) and European descent (Tsuang et al., 2001),

German families (Stöber et al., 2000), South African families (Riley et al., 2000),

Azorean families (Xu et al., 2001), Taiwanese families (Liu et al., 2001) and

Canadian families (De Luca et al., 2004). Other studies, including those that have

looked specifically at this region, have not found linkage (Curtis et al., 1999;

Neves-Pereira et al., 1998).

Although no amino acid-coding region polymorphisms have been identified,

multiple single nucleotide polymorphisms in the promoter region of CHRNA-7

as well as a partial duplication of the CHRNA-7 gene have been characterized

(Gault et al., 1998). Certain alleles are more frequently present in people with

schizophrenia and their family members (Houy et al., 2004; Leonard et al., 2002).

Furthermore, as some of these alleles are associated with both decreased promoter

region activity in vitro and impaired P50 auditory gating, they represent functional

polymorphisms that may be related to brain inhibitory pathway failure (Leonard

et al., 2002).

III. The Prototypic a7 Nicotinic Agonist, Nicotine, and Schizophrenia

The frequency of tobacco smoking is elevated in people with schizophrenia in

both inpatient (De Leon et al., 1995; Llerena et al., 2003) and outpatient settings

(Diwan et al., 1998; Hughes et al., 1986). They are heavier smokers (De Leon et al.,

1995; Kelly and McCreadie, 1999; Lasser et al., 2000; Masterson and O’Shea,

1984) and they extract more nicotine per cigarette smoked than the general

population (Olincy et al., 1997; Strand and Nybäck, 2005 but see Bozikas et al.,

2005). In addition to the health implications of smoking (GoV et al., 2005), the

burden of this heavy use includes spending 27% of an already limited income on
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the purchase of cigarettes (Steinberg et al., 2005). Their motivation to quit

smoking is low (Addington et al., 1997; Ziedonis and George, 1997), and the

smoking cessation rate is lower than the rates of other mentally ill populations

(Diwan et al., 1998) and the general population (Kelly and McCreadie, 1999).

Fortunately, interventions targeted specifically for persons with schizophrenia are

being developed (Steinberg et al., 2004; Ziedonis et al., 2003). Successful interventions

have utilized cognitive behavioral therapy and sustained release bupropion (Evins

et al., 2001; Weiner et al., 2001), nicotine replacement therapy (Breckenridge, 1990;

Chou et al., 2004; George et al., 2000; Williams et al., 2004; Ziedonis and George,

1997), cognitive behavioral therapy alone (Addington et al., 1998), and contingent

monetary reinforcement (Tidey et al., 2002) to reduce smoking or promote absti-

nence. The reduction in smoking achieved may last for up to 2 years following the

cessation treatment and is associated with a greater likelihood of abstaining in

the future (Evins et al., 2004).

The high rate and heavy level of smoking seen in this population may be

related to the illness or its treatment (reviewed in Dalack et al., 1998). Patients

report that they smoke as a sedative, to reduce negative symptoms, and to

counteract medication side eVects (Forchuk et al., 2002). Some investigators have

hypothesized that smoking in people with schizophrenia may be their striving to

reduce neuroleptic-induced side eVects such as iatrogenic parkinsonism (Decina

et al., 1990; GoV et al., 1992). Others have hypothesized that smoking may be an

attempt to prevent worsening of their symptoms during nicotine withdrawal

(Dalack et al., 1999; Dalack and Meador-WoodruV, 1996) or an endeavor to

alleviate symptoms of depression, anxiety, anhedonia, or amotivation (Glassman,

1993; Nisell et al., 1995; Svensson et al., 1990; Tung et al., 1990). Finally, smoking

may be a strategy to improve cognition (Nomikos et al., 2000; Taiminen et al.,

1998) and sensory gating (Adler et al., 1993).

Systematic studies of these hypotheses involving the administration (or with-

drawal) of nicotine have demonstrated positive eVects on movement disorders,

negative symptoms, some cognitive tasks, sensory gating, and eye movement

performance. Nicotine patch administration can improve tremor, bradykinesia-

rigidity, and akathesia (Anfang and Pope, 1997; Yang et al., 2002). However, one

study found a worsening of Abnormal Involuntary Movement Scale scores

following nicotine patch administration (Dalack et al., 1999) and another study

found no eVect of smoking on tardive dyskinesia, extrapyramidal or parkinsonian

symptoms (Smith et al., 2002). Nicotine withdrawal as part of an abstinence or

harm reduction treatment may exacerbate psychotic and depressive symptoms

(Evins et al., 2001), although this exacerbation may be prevented by the use of

nicotine replacement (George et al., 2000) or bupropion (Evins et al., 2001;

Weiner et al., 2001). The use of a nicotine patch in a research setting does not

aVect Brief Psychiatric Rating Scale scores or Scale for the Assessment of

Negative Symptoms SANS; (Dalack et al., 1999; Yang et al., 2002). A case report

SCHIZOPHRENIA AND THE �7 NICOTINIC RECEPTOR 229



found that adjuvant galantamine, the anticholinesterase inhibitor and allosteric

nicotinic receptor modulator, improved the SANS score (Rosse and Deutsch,

2002).

The eVects of nicotine on neuropsychological measures in persons with

schizophrenia have been mixed. Abstinence and then reinitiation of smoking had

no eVect on attentional measures (Sacco et al., 2005), the nicotine patch improved

attention (Dépatie et al., 2002; Levin et al., 1996), nicotine gum worsened attention

in smokers and improved it in nonsmokers (Harris et al., 2004), and nicotine nasal

spray had no eVect on attention (Sherr et al., 2002). Smoking abstinence impaired

working memory (George et al., 2001; Sacco et al., 2005) and the reinstatement of

smoking improved performance (Sacco et al., 2005). The nicotine patch also

improved haloperidol-induced deficits on another test of working memory (Levin

et al., 1996). A functional magnetic resonance imaging study of an auditory

working memory task found a behavioral improvement following nicotine patch

that was associated with increased activation within the insula, putamen, and

thalamus ( Jacobsen et al., 2004). Nicotine nasal spray, however, had no eVect on
working memory (Myers et al., 2004). While one study found a positive eVect for
nicotine nasal spray on verbal memory (Smith et al., 2002), this eVect was not seen
for smoking (Sacco et al., 2005; Smith et al., 2002), nicotine gum (Harris et al.,

2004), or the nicotine patch (Levin et al., 1996). Both nicotine nasal spray and the

patch appear to improve complex reaction times (Levin et al., 1996; Smith et al.,

2002), but there is no eVect on simple reaction time (Levin et al., 1996). Neither

abstinence (George et al., 2001) nor the reinitiation of smoking aVects executive
functioning (Sacco et al., 2005). Finally, one study found an improvement in a

visuospatial delayed recognition task following nicotine nasal spray in smokers

(Myers et al., 2004) while another study found no eVect of nicotine gum on

visuospatial abilities (Harris et al., 2004).

Studies of the eVect of nicotine on physiological abnormalities such as sensory

gating and eye tracking have been more consistent. One of the first investigations

of the eVect of nicotine in persons with schizophrenia found that abnormal P50

auditory gating was normalized in persons with schizophrenia after smoking

(Adler et al., 1993). This finding was replicated using the nicotine patch (GriYth

et al., 1998). In a diVerent paradigm of sensory gating, prepulse inhibition,

smoking prior to testing results in better test performance than not smoking

(Kumari et al., 2001). Studies of smooth pursuit eye movements have been equally

robust, with every study to date finding significant enhancement of performance

using cigarette smoking (Olincy et al., 1998, 2003), nicotine nasal spray (Avila

et al., 2003; Sherr et al., 2002), and nicotine patch (Dépatie et al., 2002).

A functional magnetic resonance imaging study of the eVects of nicotine on

smooth pursuit eye movements found that nicotine enhanced cingulate and

precuneus activation and decreased abnormally elevated hippocampal activation
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(Tregellas et al., 2004, 2005). Antisaccade task performance also improved

following the administration of nicotine gum (Larrison-Faucher et al., 2004).

While the physiological studies are all positive, the neurocognitive findings

are less consistent. These studies are limited by the diYculties inherent in studies

of any pharmacological agent, such as dosing and administrative route, as well as

the specific diYculty present in administering nicotine in persons who are already

dependent on the substance. One way to control for these diYculties is to use a

population that is not dependent on nicotine such as nonsmokers with schizo-

phrenia. While diminishing the generalizability of the results as well as making

recruitment more diYcult, this avoids the confounds of withdrawal and diVerent
long-term biological eVects of smoking such as receptor upregulation and desen-

sitization. Adler et al. (1992) took this approach one step further by first examin-

ing the eVects of nicotine gum in the first-degree relatives of persons with

schizophrenia who were impaired on the P50 auditory gating paradigm, thereby

avoiding the additional confounds of the illness itself and the medications used to

treat the illness. If one chooses to use schizophrenics who smoke, two types of

diYculties arise. The first is how to deal with the issue of withdrawal. One must

find a balance between clearing the system of the acute eVects of nicotine

while not precipitating symptoms of withdrawal that might aVect performance.

Our laboratory has advocated the use of a 2-h period of abstinence to balance

these demands. The second issue is how to control for smoking status if using

a comparison group of control smokers. While the test-retest reliability of the

reported smoking history in persons with schizophrenia is quite high (0.92–0.99)

and the intercorrelation of objective measures of smoking heaviness such as

carbon monoxide, urine cotinine, and nicotine are fairly similar between persons

with schizophrenia and controls (0.52–0.80), the relationship between the

reported number of cigarettes smoked per day and these objective measures

is much lower for persons with schizophrenia (0.02–0.37 vs 0.61–0.65; Yang

et al., 2003). Although not studied directly, this may be due to the greater

extraction of nicotine in persons with schizophrenia (Olincy et al., 1997). Despite

these diYculties, however, there appears to be clear normalization of deficits in

persons with schizophrenia following cigarette smoking or the administration of

nicotine.

Nicotine, however, has several limitations as a therapeutic agent. Nicotine

induces tachyphylaxis, as demonstrated by the inability of repeated dosing of

nicotine to enhance impaired P50 auditory gating. Therefore, sustained benefit

does not occur. While nicotine replacement eliminates many of the risks of the

other ingredients and additives in tobacco, the long-term risks of chronic nicotine

use are unknown and may include carcinogenic risk (Crowley-Weber et al., 2003;

Heusch and Maneckjee, 1998) and cerebro- or cardiovascular risk (Benowitz,

2003; Benowitz and Gourlay, 1997; Chalon et al., 2000; Elliott et al., 2003;
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Fang et al., 2003; Hakki et al., 2002; West et al., 2003). Furthermore, nicotine is an

addictive agent, and the development of tolerance can lead to the stressful

symptoms of withdrawal in the absence of continued nicotine dosing (Benowitz,

1998). Less potentially toxic and more chronically eVective cholinergic treatments

are needed.

An alternative to the use of nicotine as a nicotinic agonist would be to

increase endogenous release of acetylcholine. For instance, clozapine is able to

increase acetylcholine levels in hippocampus (Shirazi-Southall et al., 2002). Con-

sistent with this acetylcholine-enhancing eVect, patients on clozapine have near

normal levels of P50 suppression. The normalization of auditory gating over time

parallels clinical improvement (Nagamoto et al., 1999). Typical neuroleptics and

the majority of atypical neuroleptics, however, have no eVect on P50 auditory

gating (Adler et al., 2004; Freedman et al., 1983; Yee et al., 1998). Clozapine-

induced normalization of auditory gating in DBA/2 mice is blocked by

�-bungarotoxin, implicating an �7 nicotinic receptor mechanism (Simosky

et al., 2003). Ondansetron, an antiemetic, also increases acetylcholine levels via

5HT-3 receptor antagonism. Similar to clozapine, it enhances P50 auditory

gating in persons with schizophrenia (Adler et al., 2005). The anticholinesterase

inhibitor donepezil nonsignificantly enhanced the P50 auditory gating in persons

with schizophrenia (Buchanan et al., 2002). Although olanzapine is also able to

increase acetylcholine levels in the hippocampus (Shirazi-Southall et al., 2002),

and a cross-sectional study has shown less impaired levels of auditory gating in

people with schizophrenia treated with olanzapine (Light et al., 2000), a more

definitive cause and eVect relationship has not been demonstrated with a longi-

tudinal study (Arango et al., 2003) and a second cross-sectional study found no

diVerences between unmedicated schizophrenics and patients taking olanzapine

(Adler et al., 2004).

Interestingly, clozapine has also shown eYcacy in its ability to reduce smok-

ing levels in some (Combs and Advokat, 2000; George et al., 1995; McEvoy et al.,

1999) but not every study of persons with schizophrenia (De Leon et al., 2005). An

additional study examining the eVects of bupropion on smoking rates in persons

with schizophrenia was confounded by clozapine use. The one abstinent person

at 3 months and three of the four abstinent persons at a 2 year follow-up were

also taking clozapine (Evins et al., 2001, 2004). These findings may be consistent

with a decreased need to self-medicate with cigarette smoking. However, this

eVect may not be unique to clozapine, as olanzapine and risperidone have also

been shown to be associated with greater abstinence when compared to typical

antipsychotics (George et al., 2000). Despite its superior eYcacy (Kane et al., 1988)

and these additional proposed benefits, treatment with clozapine is limited given

the significant side eVects of sedation, drooling, tachycardia, and weight gain as

well as the serious potential side eVects of seizures and agranulocytosis.
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IV. The Search for an a7 Nicotinic Acetylcholine Receptor Agonist

Two compounds in current clinical use may have direct eVects on �7
nicotinic receptors. The anticholinesterase inhibitor galantamine, which has

additional modulatory eVects on the �7 nicotinic receptor, has been reported

to be beneficial for schizophrenia in a case study (Rosse and Deutsch, 2002).

Tropisetron, a 5-HT3 antagonist marketed outside the United States as an

antinausea drug, also has eYcacy as an �7 nicotinic receptor agonist (Macor

et al., 2001; Papke et al., 2005). Tropisetron increases the inhibition of P50

auditory gating in schizophrenia (Koike et al., 2005), an eVect due to actions at

the �7 nicotinic receptor (Hashimoto et al., 2005).

In addition to these medications already being clinically utilized, several

cholinergic receptor agonists have been developed to further characterize central

nervous system cholinergic function and as potential candidates for the treatment

of dementia of the Alzheimer’s type (Kem, 2000). Drugs currently in develop-

ment include a 1,4-diaza-bicyclo[3.2.2]nonane-4-carboxylic acid 4-pyridin-2-

yl-phenyl ester at Pfizer Inc., an (E)-N-methyl-5 (3-pyridinyl)-4-penten-2-amine

at Targacept Inc., and a substituted-heteroaryl-7-aza[2.2.1]bicycloheptanes at

Pharmacia & Upjohn Company. AR-R 17779, an Astra Arcus product, is an

acetylcholine analogue with full agonist properties at the �7 nicotinic receptor

(Mullen et al., 2000). ABT-418, while primarily functioning as an �4/�2 agonist,

also has some agonist properties at the �7 nicotinic receptor (Briggs et al., 1995).

Derivatives of the 5-HT3 receptor antagonist tropisetron are currently in

development (Macor et al., 2001). 3-(2,4 Dimethoxy)benzylidene-anabaseine

(DMXBA) is one of a series of compounds derived from anabaseine, an alkaloid

found in marine worms (Kem et al., 1971, 1997; Meyer et al., 1998c). DMXBA is

a partial agonist at the �7 receptor (Briggs et al., 1995; De Fiebre et al., 1995) and

is a weak competitive antagonist at �4/�2 nicotinic (Kem et al., 1996; Meyer

et al., 1998a; Papke et al., 2000) and 5HT-3 receptors. Although the metabolites of

DMXBA are also active at these receptors, their biological eVect may be

limited by their greater polarity and consequently, greater diYculty in crossing

the blood-brain barrier (Kem et al., 2004).

The eYcacy of �7 nicotinic receptor agonists has also been assessed in

multiple animal paradigms of learning and memory (Levin and Rezvani, 2000;

Levin and Simon, 1998). DMXBA improves memory-related behaviors in mul-

tiple paradigms, including a delayed matching to sample task (Briggs et al.,

1997), nonspatial avoidance task (Arendash et al., 1995; Meyer et al., 1994, 1997,

1998b), a 17-arm maze (Arendash et al., 1995), and the Morris water maze (Meyer

et al., 1997). DMXBA also improves learning behavior as evidenced by enhanced

performance during eye blink classical conditioning acquisition (WoodruV-Pak,
2003; WoodruV-Pak et al., 1994) and performance in the Lashley III maze
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(Arendash et al., 1995). Some of these beneficial eVects may be mediated by

enhancement of long-term potentiation in hippocampal cells, a process impor-

tant in learning and memory formation (Hunter et al., 1994). Finally, a mouse

model of schizophrenia-like cognitive and deficit symptoms, ‘‘popping,’’ induced

by the administration of a N-methyl-D-aspartic acid receptor antagonist is

reduced following the administration of anabaseine (Mastropaolo et al., 2004).

Given the known role of �7 nicotinic receptors in auditory gating, these drug

candidates have also been tested for their ability to reverse auditory gating in

animal models. As hypothesized, subcutaneous administration of DMXBA

normalizes auditory gating in DBA/2 mice (Stevens et al., 1998). Furthermore,

a second injection of DMXBA produces a similar enhancement of inhibition.

This lack of tachyphylaxis may represent improved eYcacy of DMXBA in

normalizing auditory gating on a chronic basis (Stevens et al., 1998, 1999).

Intragastrically administered DMXBA also enhanced impaired auditory gating,

demonstrating that the medication can be eVectively administered on an oral

basis and is still eYcacious at normalizing impaired auditory gating (Simosky

et al., 2001). DMXBA failed in another more complex and strain-dependent

model of sensory gating, prepulse inhibition (Olivier et al., 2001; Schreiber et al.,

2002). Despite this lack of eVect of �7 nicotinic receptor agonists on prepulse

inhibition measures, the robust reversal of P50 auditory gating deficits in these

animal models is very promising for a similar eVect in studies of auditory gating

and cognition in schizophrenia.

V. The Phase 1 Study of DMXBA in Schizophrenia

On the basis of the success of preclinical trials of �7 agonists in animal models

of learning and memory and the safety of these drugs, DMXBA was initially

evaluated in normal subjects with a planned development for the treatment of

dementia of the Alzheimer’s type. DMXBA was found to significantly improve

simple reaction time, correct detection during digit vigilance, both word and

picture recognition memory, and both immediate and delayed word recall.

Additionally, DMXBA improved subject performance speed on a numeric and

spatial working memory task. Improvement was seen at doses from 25 to 150 mg

with minimal adverse events (Kitagawa et al., 2003). Despite these promising

results, further development of DMXBA was not pursued by Taiho Pharmaceu-

ticals. However, following the correction of the P50 auditory gating deficit by

nicotine in persons with schizophrenia, the evidence of the �7 nicotinic receptor’s
role in this gating deficit in animal studies, as well as the reversal of sensory gating

abnormalities in an animal model by the �7 nicotinic receptor agonist DMXBA,
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this drug was identified as a potential candidate in the treatment of cognitive

dysfunction in schizophrenia (Martin et al., 2004).

A second phase I trial of DMXBA has been conducted in persons with

schizophrenia (Olincy et al., 2006). During this 3-visit study, DMXBA was

administered in a double-blind fashion to 12 persons with schizophrenia. Doses

were either placebo, a 75-mg dose with a 37.5-mg follow-up dose, or a 150-mg

dose with a 75-mg follow-up dose. Subjects then underwent P50 auditory gating

as well as neurocognitive testing. DMXBA normalized the P50 ratio (eVect size of
2.36) as well as the test wave amplitude (eVect size 1.45), a more specific measure

of inhibition (Fig. 1). These findings are an improvement over the study of

nicotine on P50 auditory gating in relatives (eVect size 0.86). DMXBA was also

Predrug baseline

Placebo 

DMXBA 75 + 37.5 mg

DMXBA 150 + 75 mg 

→ →P50 P50
Conditioning Test stimuli (500 ms)

FIG. 1. Auditory-evoked responses of a subject with schizophrenia. Stimuli were a conditioning

auditory stimulus and an identical test stimulus, delivered 500 ms apart. Inhibition of the test P50

response is increased by DMXBA administration, particularly during the lower dose (third row),

compared to baseline and placebo responses above it. Arrows show the timing of the stimuli and vertical

barsmark the location of the P50wave in the tracings above. Positive polarity is downwards; vertical grid

interval is 2 �V, and horizontal is 50 ms. This figure is reproduced with permission from Olincy

et al. (2006). Proof-of-concept trial of an �7 nicotinic agonist in schizophrenia. Arch. Gen. Psychiatry,

June 2006, 63, 630–638; Copyright# 2006, American Medical Association. All rights reserved.
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able to improve performance on both the Repeatable Battery for the Assessment

of Neuropsychological Status’ (RBANS) Total Scale score (eVect size 1.8) as well
as the Attention subscale (eVect size 2.17; Fig. 2). These eVect sizes are much

larger than those seen for nicotine on the RBANS (0.6 and 0.25 for the Total

scale score and Attention subscale score, respectively; Harris et al., 2004) as well

as for multiple other tests of the actions of nicotine on cognition in schizophrenia

(eVect sizes of 0.27–1.3; Dépatie et al., 2002; Levin et al., 1996; Myers et al., 2004;

Sacco et al., 2005; Smith et al., 2002). Furthermore, the eVect sizes seen with

DMXBA were also favorable when compared to the typical eVect sizes of 0.2–0.5
for the eVect of second generation antipsychotics on attentional and composite

cognitive scores in persons with schizophrenia (Keefe et al., 2004). The positive

eVects of DMXBA on sensory gating and cognition were not related to any changes

in Brief Psychiatric Rating Scale scores and were therefore not due to changes in

positive, negative, or anxiety-related symptoms.

These findings provide further evidence for a role of the nicotinic cholinergic

system in the pathology of schizophrenia. Furthermore, specific �7 nicotinic

cholinergic agonism is a therapeutic mechanism that provides hope for the
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FIG. 2. EVects of DMXB A and placebo on the RBANS Total Scale score and its specific indices.

I is immediate and D is delayed memory. This figure is reproduced with permission from Olincy et al.

(2006). Proof-of-concept trial of an �7 nicotinic agonist in schizophrenia. Arch. Gen. Psychiatry, June

2006, 63, 630–638; Copyright # 2006, American Medical Association. All rights reserved.
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treatment of cognitive deficits in schizophrenia. As cognitive symptoms are more

closely related to psychosocial dysfunction than traditional positive symptoms,

such as hallucinations and delusions (Green, 1996), such a treatment could

substantially increase the quality of life for persons with this devastating illness

and reduce the financial burden of this disease.
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With the availability of an increased number of experimental tools, for

example potent and brain-penetrating H1-, H2-, and H3-receptor ligands and

mutant mice lacking the histamine synthesis enzyme or the histamine receptors,

the functional roles of histaminergic neurons in the brain have been considerably

clarified during the recent years, particularly their major role in the control of

arousal, cognition, and energy balance. Various approaches tend to establish the

implication of histaminergic neurons in schizophrenia. A strong hyperactivity of

histamine neurons is induced in rodent brain by administration of methamphet-

amine or NMDA-receptor antagonists. Histamine neuron activity is modulated

by typical and atypical neuroleptics. H3-receptor antagonists/inverse agonists

display antipsychotic-like properties in animal models of the disease. Because of

the limited predictability value of most animal models and the paucity of drugs

aVecting histaminergic transmission that were tried so far in human, the evidence

remains therefore largely indirect, but supports a role of histamine neurons in

schizophrenia.
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I. Introduction

The idea that histamine may have a function as a neurotransmitter in brain

emerged only slowly during the preceding century, essentially at the beginning of

the 1970s (Schwartz, 1975), although it had been detected therein much earlier.

The main landmarks in this history can be summarized as follows. The develop-

ment of reliable and sensitive methods to assay the amine and its synthesizing

enzyme (Schwartz et al., 1970; Taylor and Snyder, 1971b) was instrumental in

allowing to establish its localization in neurons, as well as its presence in a neural

pathway traveling in the medial forebrain bundle as evidenced indirectly by

lesion studies (Garbarg et al., 1974). The turnover of the amine in cerebral

neurons was found to be rapid and almost instantaneously modified by drugs

like barbiturates or reserpine (Pollard et al., 1973a,b; Taylor and Snyder, 1971a).

The demonstration of depolarization-induced release and enhanced synthesis via

calcium-dependent mechanisms (Atack and Carlsson, 1972; Taylor and Snyder,

1973; Verdiere et al., 1975), the elucidation of inactivating metabolic pathways

(Reilly and Schayer, 1970; Schwartz et al., 1971), and the characterization in

brain of the H1 and H2 receptors by biochemical and electrophysiological

approaches (Baudry et al., 1975; Haas and Bucher, 1975) completed by the

mid-1970s the ‘‘picture’’ of histamine as a typical monoaminergic neurotransmit-

ter. Even more, taking into account a variety of features of the system made

available at this time, it was proposed that histaminergic neurons were critically

involved in the control of arousal (Schwartz, 1977).

Nevertheless, it took nearly 10 years to develop reliable immunohistochemi-

cal tools that permitted to identify a tiny posterior hypothalamic area, the tuber-

omammillary nucleus, as the origin of the histaminergic pathways (Panula et al.,

1984; Watanabe et al., 1983) and, thereby, fully convince the neurobiological

community of their existence. At approximately the same time, the third hista-

mine receptor was identified in our laboratory, which is almost exclusively present

in brain where it controls the neurotransmitter release and synthesis (Arrang

et al., 1983) and developed the first selective and brain-penetrating ligands

(Arrang et al., 1987); these agents were used, thereafter, in hundreds of studies, to

modify the activity of histaminergic neurons and, thereby, disclose their functions.

These basic aspects, which were covered in detail in several comprehensive

reviews (Brown et al., 2001; Haas and Panula, 2003; Schwartz et al., 1991;

Watanabe and Yanai, 2001), will be briefly presented in the first part of the present

chapter.

The evidence for the implication of histaminergic neurons in neuropsychia-

tric diseases remains largely indirect due to the poor predictability value of most

animal models and the paucity of drugs aVecting histaminergic transmission that

were tried in these human diseases, so far. However, the changes in histamine
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neuron activity, the modulation of the histaminergic system by neuroleptics, and

the antipsychotic-like properties of H3 receptor antagonists/inverse agonists

support a role of histamine neurons in schizophrenia.

II. The Histaminergic Neuronal System

A. ORGANIZATION

One decade after the first evidence by Garbarg et al. (1974) of an ascending

histaminergic pathway obtained by lesions of the medial forebrain bundle, the exact

localization of corresponding perikarya in the posterior hypothalamus was revealed

immunohistochemically in the rat using antibodies against histamine (Panula et al.,

1984) or L-histidine decarboxylase (EC 4.1.1.22, HDC), the enzyme responsible for

the one-step histamine formation in the brain (Watanabe et al., 1984). Data on the

distribution, morphology, and connections of histamine and HDC-immunoreactive

neuronswere comprehensively reviewed (Panula andAiraksinen, 1991; Panula et al.,

2000; Schwartz et al., 1991; Tohyama et al., 1991;Wouterlood and Steinbusch, 1991)

and will be only summarized briefly here.

All known histaminergic perikarya constitute a continuous group of mainly

magnocellular neurons located in the posterior hypothalamus and collectively

named the tuberomammillary nucleus (Fig. 1). In the rat brain, the tuberomam-

millary nucleus consists of about 2000 histaminergic neurons (Ericson et al., 1987)

and can be subdivided into medial, ventral, and diVuse subgroups extending

longitudinally from the caudal end of the hypothalamus to the midportion of the

third ventricle. A similar organization was described in humans, except that

histaminergic neurons are more numerous (~64,000) and occupy a larger propor-

tion of the hypothalamus (Airaksinen et al., 1991). Neurons expressing mRNAs for

histidine decarboxylase were found by in situ hybridization in the tuberomammil-

lary nucleus, but not in any other brain area (Bayliss et al., 1990). The histaminergic

neurons are characterized by the presence of an unusually large variety of markers

for other neurotransmitter systems. Most, if not all, contain �-aminobutyric acid

(GABA; Airaksinen et al., 1992; Ericson et al., 1991b), adenosine deaminase, a

cytoplasmic enzyme possibly involved in adenosine inactivation (Patel et al., 1986;

Senba et al., 1985), and a splice variant of choline acetyltransferase (Kanayama

et al., 2003). Some histaminergic neurons also express several neuropeptides but

these colocalizations are observed in various proportions and display strong species

diVerences (Airaksinen et al., 1992; Trottier et al., 2002).

In analogy with other monoaminergic neurons, histaminergic neurons con-

stitute long and highly divergent systems projecting in a diVused manner to many

cerebral areas (Panula and Airaksinen, 1991; Tohyama et al., 1991; Wouterlood
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FIG. 1. Localization of histaminergic perikarya in the tuberomammillary nucleus. Histaminergic perikarya are represented by closed circles on

frontal sections at indicated levels of caudal hypothalamus. Histidine decarboxylase (HDC) mRNA expression (left) and immunoreactivity (right) is

shown in the ventral tuberomammillary subgroup (rostral part). Abbreviations: Arc, arcuate nucleus; cmc, caudal magnocellular nucleus; MM,

medial mammillary nucleus medial part; MMn, medial mammillary nucleus median part; MP, medial mammillary nucleus posterior part; pcmc,

posterior caudal magnocellular nucleus; PMV, premammillary nucleus ventral part; SuM, supramammillary nucleus; TMC, tuberal magnocellular

nucleus; TMdiV, tuberomammillary nucleus diVuse part; TMMd, medial tuberomammillary subgroup dorsal part; TMMv, medial

tuberomammillary subgroup ventral part; TMVc, ventral tuberomammillary subgroup caudal part; TMVr, ventral tuberomammillary subgroup

rostral part.
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and Steinbusch, 1991; Fig. 2). Immunoreactive, mostly unmyelinated, varicose or

nonvaricose fibers are detected in almost all cerebral regions, particularly limbic

structures. It was confirmed that individual neurons project to widely divergent

areas, mainly in an ipsilateral fashion. Major areas of termination of these long

ascending fibers arising from the tuberomammillary nucleus are all layers of the

cerebral cortex, the olfactory bulb, the hippocampus, the nucleus accumbens, the

globus pallidus, the thalamus, the amygdaloid complex, and many hypothalamic

nuclei. A histaminergic neuronal system reminiscent of that described in rodents

is present in the monkey and human brain with, for example, a dense network of

fibers present in various cortical areas or thalamic nuclei (Jin et al., 2002; Panula

et al., 1990; Wilson et al., 1999).

Several anterograde and retrograde tracing studies established the existence of

aVerent connections to the histaminergic perikarya, namely from the infralimbic

cortex, the septum-diagonal band complex, the preoptic region, the hypothala-

mus, and the hippocampal area (subiculum; Ericson et al., 1991a; Wouterlood

and Steinbusch, 1991). Sleep-active GABAergic neurons in the ventrolateral

preoptic nucleus (VLPO) provide a major input to the tuberomammillary nucleus

(Sherin et al., 1996, 1998). The contacts between these two systems are reciprocal

because the VLPO is densely innervated by histaminergic fibers (Chou et al.,

2002). Histaminergic neurons also receive very dense orexin innervation origi-

nating from the lateral hypothalamus (Chemelli et al., 1999). Again, the relation-

ships between the orexin and histamine systems seem to be reciprocal because the

orexin neurons are heavily innervated by histaminergic axons (Eriksson et al.,

2001a). Supporting their role in the regulation of food intake, histaminergic

neurons are densely innervated by nerve fiber varicosities immunoreactive for

amylin and �-melanocyte stimulating hormone, two anorexigenic peptides

(D’Este et al., 2001; Fekete and Liposits, 2003). Projections from the brainstem

to the tuberomammillary nucleus have also been demonstrated. Monoaminergic

inputs to the tuberomammillary nucleus originate mainly from the medulla

oblongata and from the raphe nuclei, with a lower innervation originating from

the locus coeruleus, the ventral tegmental area, and the substantia nigra (Ericson

et al., 1989; Sakai et al., 1990).

B. METABOLISM OF HISTAMINE

Histamine biosynthesis in the brain involves two steps: transport of the precur-

sor L-histidine (His) into the cell and its subsequent decarboxylation by HDC

(Schwartz et al., 1991). The human HDC gene is composed of 12 exons and its

transcripts are alternatively spliced but only the 2.4-kb mRNA, which is predomi-

nant in human brain, encodes functional HDC (Yatsunami et al., 1994). The native

HDC is a pyridoxal phosphate-dependent enzyme under a homodimeric form
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FIG. 2. Autoradiographic localization of histamine receptors and disposition of main histaminergic

pathways on sagittal brain sections. H1 and H2 receptors were visualized on guinea pig brain sections

using [125I]iodobolpyramine and [125I]iodoaminopotentidine, respectively. H3 receptors were

visualized on rat brain sections using [125I]iodoproxyfan. Histaminergic pathways (arrows) were
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constituted of two subunits of a 54-kDa isoform andmainly found in the cytoplasm

of histaminergic neurons. The regional distribution of brain HDC activity is

consistent with data derived from immunohistochemistry, with the highest activity

being found in the hypothalamus, the lowest levels in the cerebellum and interme-

diate activity in telencephalic areas (Schwartz et al., 1970, 1991). HDC-knockout

mice provide a suitable model to investigate the involvement of histaminergic

neurons in the regulation of fundamental functions such as sleep-wake control

(Parmentier et al., 2002), energy homeostasis (Fülop et al., 2003), learning (Dere

et al., 2003), seizure development (Chen et al., 2003b), motor and emotional

behaviors (Dere et al., 2004; Iwabuchi et al., 2004), or circadian rhythms (Abe

et al., 2004).

In neurons, the newly synthesized histamine is transported to vesicles by the

vesicular monoamine transporter 2 (VMAT2) for which it displays high aYnity

(Peter et al., 1994). Although histaminergic neurons constitute the major localiza-

tion of HDC, at least two other types of histamine-producing cells, mast cells and

microglial cells, have been reported by lesion, biochemical, and histochemical

studies. Although they are rather scarce in the brain, mast cells are generally

abundant in leptomeninges and also occur in the parenchyma of various brain

areas, such as thalamus, where they are mainly distributed along cerebral vessels

(Schwartz et al., 1991). Microglial cells belong to the monocyte/macrophage

lineage and also contain both HDC activity and mRNAs (Katoh et al., 2001).

Brain histamine is metabolized via transmethylation into tele-methylhistamine

(tele-MeHA) catalyzed by histamine N-methyltransferase (HMT, EC 2.1.1.8).

In vivo inhibition of HMT increases neuronal histamine release, confirming that

this enzyme plays a critical role in histamine inactivation (Itoh et al., 1991). Its

levels are decreased in Down syndrome and increased in Pick’s disease (Kim et al.,

2002), and the drug tacrine, which is used in long-term palliative treatment of

Alzheimer’s disease, inhibits HMT, even more potently than acetylcholinesterase

(Morisset et al., 1996). HMT-like immunoreactivity within the CNS was found in

the cytosol of a variety of neurons and in vascular walls, whereas astrocytes were

not stained (Nishibori et al., 2000). How extracellular histamine is transported

represented on a sagittal section of rat brain. Abbreviations: 7, facial nucleus; AA, amygdaloid area;

Acb, accumbens nucleus; AH, anterior hypothalamic area; AO, anterior olfactory nuclei; BST, bed

nucleus of the stria terminalis; Cb, cerebellum; cc, corpus callosum; CG, central gray; CPu, caudate

putamen; Cx, cortex; DR, dorsal raphe nucleus; f, fornix; Fr, frontal cortex; Hi, hippocampus; Hy,

hypothalamus; IC, inferior colliculus; io, inferior olive; LPO, lateral preoptic area; LS, lateral septum;

M, motor cortex; MD, mediodorsal thalamic nucleus; Mo5, motor trigeminal nucleus; OB, olfactory

bulb; Pn, pontine nucleus; SN, substantia nigra; Sol, nucleus of the solitary tract; sox, supraoptic

decussation; Sp5, spinal trigeminal nucleus; SuG, superficial gray layer of superior colliculus; Thal,

thalamus; Tu, olfactory tubercle; VDB, nucleus of the vertical limb diagonal band; Vis, visual cortex;

VMH, ventromedial hypothalamic nucleus.

HISTAMINE AND SCHIZOPHRENIA 253



into these HMT-containing cells is still unclear. In contrast with other monoam-

inergic systems, no clear evidence for a high-aYnity uptake system for histamine

could be found (Schwartz et al., 1991). There is, however, some evidence that

histamine could be transported by a low-aYnity, low-specificity, high-capacity

system ( Jonker and Schinkel, 2004).

C. HISTAMINE RECEPTORS

In the brain, the eVects of histamine are mediated by three histamine

receptor subtypes (H1, H2, and H3), which have been defined by means of

functional assays followed by design of selective agonists and antagonists and

cloning of their genes (Hill et al., 1997; Schwartz and Arrang, 2002). All three

belong to the superfamily of receptors with seven transmembrane domains and

coupled to guanylnucleotide-sensitive G-proteins (Table I).

1. The Histamine H1 Receptor

The H1 receptor was initially defined in functional assays (e.g., smooth muscle

contraction) and the design of potent antagonists, the so-called ‘‘antihistamines’’

(e.g., mepyramine), most of which display prominent sedative properties. It was first

cloned from cow by expression cloning (Yamashita et al., 1991), and subsequently,

from a variety of species, including man (Hill et al., 1997). The human gene contains

an intron in the 50-flanking untranslated region, close to the translation initiation

codon, but the translated region is intronless (De Backer et al., 1998). The histamine

H1 receptor produces its intracellular eVects via the activation of Gq/11 proteins (Hill

et al., 1997; Leopoldt et al., 1997; Fig. 3). In brain tissues and various cell systems

(Leurs et al., 1994; Schwartz et al., 1991), H1 receptor activation leads to stimulation

of phospholipase C� and inositol phosphate release. The subsequentmobilization of

Ca2þ from intracellular stores followed by an influx of extracellular Ca2þ induces an

increase in intracellular Ca2þ levels. This process is presumably responsible for the

activation of various Ca2þ-dependent pathways by the recombinant or native

H1 receptor, such as potentiation of cAMP accumulation, cGMP accumulation,

arachidonic acid release, and glycogenolysis (Leurs et al., 1994; Schwartz et al., 1991).

The H1 receptor mediates mainly excitatory responses in brain, leading to a

depolarization and/or an increase in firing frequency in many neurons (Brown

et al., 2001; Haas and Panula, 2003).

Biochemical and localization studies of the H1 receptor were made feasible

with the design of reversible and irreversible radiolabeled probes such as [3H]

mepyramine and [125I]iodobolpyramine (Garbarg et al., 1992; Pollard and

Bouthenet, 1992). The distribution in the brain of H1 receptor-binding sites is

consistent with a predominant neuronal localization of H1 receptors. They are

abundant in guinea pig thalamus, hypothalamic nuclei (e.g., ventromedial
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TABLE I

PROPERTIES OF FOUR HISTAMINE RECEPTOR SUBTYPES

H1 H2 H3 H4

Coding sequence 491 a.a. (b) 358 a.a. (r) 445 a.a. (h) 390 a.a. (h)

488 a.a. (gp) 359 a.a. (d, h, gp) Shorter variants

(h, r, m, gp)

389 a.a. (gp)

486 a.a. (r) 391 a.a. (m, r)

Chromosome localization 3p25 5 20qTEL 18q11.2

Highest brain densities Thalamus Striatum Striatum Very low density

Cerebellum Cerebral cortex Frontal cortex

Hippocampus Amygdala Substantia nigra

Autoreceptor No No Yes No

AYnity for histamine Micromolar Micromolar Nanomolar Nanomolar

Characteristic agonists Histaprodifen Impromidine R-�-methylhistamine 4-methylhistamine

Characteristic antagonists Mepyramine Cimetidine Thioperamide JNJ 7777120

Radioligands [3H]Mepyramine [3H]Tiotidine [3H]

R-�-methylhistamine

[3H]Histamine

[125I]Iodobolpyramine [125I]Iodoamino-potentidine [125I]Iodoproxyfan

Second messengers Inositol phosphates (þ) cAMP (þ) cAMP (�) cAMP (�)

Ca2þ (þ) Ca2þ (þ) Inositol phosphates (�)

Arachidonic acid (þ) Arachidonic acid (þ)

cAMP (potentiation) Ca2þ (�)

a.a., amino acid.
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nuclei), nucleus accumbens, amygdaloid nuclei, and frontal cortex but not in

caudate-putamen (Pollard and Bouthenet, 1992; Fig. 2). In the human brain,

binding sites are more abundant in the neostriatum than in the guinea pig

(Martinez-Mir et al., 1990), and, in agreement with the H1 receptor-mediated

modulation of thalamocortical functions by histamine, H1 receptor-binding sites

and mRNAs are abundant in the human thalamus and prefrontal cortex ( Jin and

Panula, 2005; Jin et al., 2002).

Blockade of H1 receptors in brain is presumably involved in the sedative, pro-

obesity and proconvulsant properties of many drugs displaying high H1 receptor

aYnity. The behavioral data obtained with H1 receptor knockout mice largely

support a role of H1 receptors in arousal and cognition (Huang et al., 2001; Inoue

et al., 1996; Lin et al., 2002), anxiety and aggressive behavior (Yanai et al., 1998),

nociception (Mobarakeh et al., 2000; Sakurada et al., 2004), anticonvulsant action

(Chen et al., 2003b; Hirai et al., 2004), and regulation of food intake and body

weight (Masaki et al., 2004; Morimoto et al., 1999).

2. The Histamine H2 Receptor

Studies of the molecular properties of the H2 receptor have been greatly

facilitated in the 1990s by the design of its first potent and selective radioligand,

[125I]iodoaminopotentidine (Ruat et al., 1990; TraiVort et al., 1992), as well as by
the cloning of its gene in various species including man (Gantz et al., 1991a,b; Hill

et al., 1997). The recombinant or native H2 receptor is coupled to Gs proteins and

mediates activation of adenylyl cyclase with subsequent increases in cAMP

formation and protein kinase A activation (Green et al., 1977; Hegstrand et al.,

1976; Schwartz et al., 1991; Fig. 3). As the H1 receptor, the H2 receptor usually

mediates excitatory responses in neurons (Brown et al., 2001; Haas and Panula,

2003). Its distribution in the brain is consistent with a predominant neuronal

localization. Autoradiographic localization of the H2 receptor using [125I]iodoa-

minopotentidine in the guinea pig (Vizuete et al., 1997), monkey, and human

brain (Honrubia et al., 2000; Martinez-Mir et al., 1990; TraiVort et al., 1992)
shows it distributed heterogeneously (Fig. 2). The H2 receptor is found in most

areas of the cerebral cortex. The caudate putamen, ventral striatal complex and

amygdaloid nuclei (bed nucleus of the stria terminalis) are among the richest

brain areas. The distribution of the mRNAs is generally in agreement with that of

the corresponding binding sites. In the striatum, the absence of mRNAs in the

FIG. 3. Histamine metabolism and signaling in brain. Abbreviations: AA, arachidonic acid; AC,

adenylate cyclase; DA, dopamine; ERK, extracellular signal-related kinase; GABA, �-aminobutyric

acid; GC, guanylate cyclase; Glu, glutamate; IP3, inositol-1,4,5-triphosphate; NA, noradrenaline;

PKA, protein kinase A; PLA2, phospholipase A2; PLC, phospholipase C; NO, nitric oxide.
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substantia nigra together with the loss of binding sites in Huntington’s disease

(Martinez-Mir et al., 1993) indicate that H2 receptors are expressed by intrinsic

neurons. The brain-penetrating H2 receptor antagonist, zolantidine, has been

used to investigate the involvement of H2 receptors in various neurochemical and

behavioral responses (Mori et al., 2004; Nalwalk et al., 1995). A number of

tricyclic antidepressants are very potent inhibitors of the H2 receptor-linked

adenylyl cyclase on brain membranes (Green and Maayani, 1977; Kanof and

Greengard, 1978), but not on intact cell preparations (Dam Trung Tuong et al.,

1980). In addition, the idea that antidepressants derive their clinical eYcacy from

blockade of cerebral H2 receptors seems unlikely because such a blockade was

not observed after chronic treatments (Nowak et al., 1983).

3. The Histamine H3 Receptor

The H3 receptor was initially detected and identified by traditional pharma-

cological approaches as an autoreceptor controlling histamine synthesis and

release in the rat and human brain (Arrang et al., 1983, 1987, 1988). The cloning

of its cDNAs in various species including human and rat confirmed that the H3

receptor is coupled to Gi/Go proteins (Drutel et al., 2001; Lovenberg et al., 1999;

Morisset et al., 2000). In various cell lines, activation of the recombinant H3

receptor inhibits adenylate cyclase, activates phospholipase A2, and activates the

ERK signaling pathway (Fig. 3). Although a direct inhibition of adenylate cyclase

could not be observed in various brain regions (Garbarg et al., 1989; Schlicker

et al., 1994a), H3 autoreceptors modulate histamine synthesis through the cAMP

pathway (Gomez-Ramirez et al., 2002; Torrent et al., 2005) and H3 receptor

activation inhibits dopamine D1 receptor-mediated cAMP formation in the rat

striatum (Sanchez-Lemus and Arias-Montano, 2004). Recombinant H3 receptors

display a high level of constitutive (or spontaneous) activity and most antagonists

act in fact as inverse agonists on various responses (Esbenshade et al., 2005;

Morisset et al., 2000). Consistent with the physiological relevance of the process,

constitutive activity of native H3 receptors is detected in rodent brain (Morisset

et al., 2000; Rouleau et al., 2002). Inverse agonists at H3 receptors enhance

histamine neuron activity by abrogating the brake triggered by constitutive

activity of H3 autoreceptors (Gbahou et al., 2003; Morisset et al., 2000) and are,

therefore, important tools to delineate the functions of histaminergic neurons.

The recombinant human H3 receptors expressed at physiological densities also

display constitutive activity, suggesting it is present in human brain (Rouleau

et al., 2002).

After its characterization as an autoreceptor present on histamine neurons, the

H3 receptor was shown to inhibit presynaptically the release of othermonoamines in

brain. H3 receptors inhibit the in vitro release of various neurotransmitters, includ-

ing histamine itself, noradrenaline, serotonin, dopamine, glutamate, GABA, and
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tachykinins (Schlicker et al., 1994b; Schwartz and Arrang, 2002). This presynaptic

inhibition presumably results from a direct G-protein-mediated blockade of voltage-

gated calcium channels (Brown andHaas, 1999; Jang et al., 2001; Silver et al., 2002).

In brain slices or isolated neurons, somatodendriticH3 autoreceptors also inhibit the

firing rate of histaminergic neurons by inhibiting multiple high-threshold calcium

channels (Stevens et al., 2001; Takeshita et al., 1998).

The inhibition mediated by H3 autoreceptors is now well established as a

major control mechanism for the activity and functions of histaminergic neurons.

However, the physiological role of the H3 receptors present on other neuronal

populations remains largely unknown. In the striatum, H3 heteroreceptors inhibit

dopamine synthesis (Molina-Hernandez et al., 2000) and release (Schlicker et al.,

1993) but do not regulate dopamine neuron activity in vivo under basal conditions

(Imaizumi and Onodera, 1993; Miyazaki et al., 1997; Oishi et al., 1990b). In the

striatum, dentate gyrus, and amygdala, H3 receptor activation inhibits glutama-

tergic transmission in vitro (Brown and Reymann, 1996; Doreulee et al., 2001;

Jiang et al., 2005; Molina-Hernandez et al., 2001), but the standard antagonist/

inverse agonist thioperamide does not increase synaptic potentials in the freely

moving rat (Manahan-Vaughan et al., 1998). H3 receptors inhibit GABA release

in rat striatum, substantia nigra, and hypothalamus (Arias-Montano et al., 2001;

Garcia et al., 1997; Jang et al., 2001).

A detailed autoradiographic mapping of the rat H3 receptor was achieved with

the selective antagonist [125I]iodoproxyfan (Pillot et al., 2002a; Fig. 2). The compari-

son with the distribution of H3 receptor mRNAs provides evidence for the presence

ofH3 receptors onmany neuronal perikarya, dendrites, and projections.The highest

receptor densities are found in the cerebral cortex, basal ganglia, olfactory tubercles,

amygdala, and tuberomammillary nucleus. Receptor densities are particularly high

in the striatum where lesions indicated that most H3 receptors are present on

projection neurons (Anichtchik et al., 2000a; Cumming et al., 1991; Pollard et al.,

1993; Ryu et al., 1994a,b, 1995). In agreement, high densities ofH3 receptormRNAs

are also found in the striatum from rat, guinea pig, and human (Anichtchik et al.,

2001; Pillot et al., 2002a; Tardivel-Lacombe et al., 2000). H3 receptors present on

striatonigral neurons account for the dense binding in the substantia nigra pars

reticulata (Ryu et al., 1996). H3 receptors are also expressed in striatopallidal

projection neurons (Pillot et al., 2002b) and account for the dense binding in the

external globus pallidus in rat (Pillot et al., 2002a) and human (Anichtchik et al., 2001;

Martinez-Mir et al., 1990). This expression in the external pallidum is increased in

Parkinson’s disease (Anichtchik et al., 2001) and dramatically reduced in Huntington’s

disease (Goodchild et al., 1999). H3 receptor functions have primarily been studied

with standard agonists and antagonists/inverse agonists and with mice lacking

H3 receptors (Koyama et al., 2003; Rizk et al., 2004; Takahashi et al., 2002; Toyota

et al., 2002).
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4. The Histamine H4 Receptor

Several groups cloned an additional histamine receptor subtype, termed H4,

via in silico analysis of human genomic databases (Hough, 2001). Its gene structure,

coding sequence, and pharmacology are clearly related to the H3 receptor. Only

few selective ligands have so far been designed for this novel receptor (Gbahou

et al., 2006; Lim et al., 2005; Thurmond et al., 2004) and antagonists mainly display

anti-inflammatory properties (de Esch et al., 2005). Its expression in the brain is

very low, if any, and was detected only in some studies (Coge et al., 2001; Liu et al.,

2001a). Its highest level of expression is observed in hematopoietic tissues and cells

(bone marrow, spleen, leucocytes; Hough, 2001).

D. HISTAMINERGIC NEURON ACTIVITY AND ITS CONTROL

The autoreceptor-regulated modulation of histamine synthesis in, and release

from, brain neurons is well documented (Schwartz et al., 1991). It was initially

evidenced in brain slices or synaptosomes (Arrang et al., 1985) after labeling the

endogenous pool of histamine using the [3H]-precursor (Verdiere et al., 1975).

Exogenous histamine decreases the release and formation of [3H]histamine in-

duced by depolarization, and analysis of these responses led to the pharmacologi-

cal definition of H3 receptors. The inhibition mediated by the H3 autoreceptor

constitutes a major regulatory mechanism for histaminergic neuron activity under

physiological conditions (Arrang et al., 1987; Schwartz et al., 1991). Administration

of selective H3 receptor agonists reduces histamine turnover and release in vivo

(Garbarg et al., 1989; Itoh et al., 1992). In contrast, H3 receptor antagonists/inverse

agonists enhance histamine turnover and release in vivo, indicating that autorecep-

tors are tonically activated (Itoh et al., 1991; Ligneau et al., 1998; Mochizuki et al.,

1991; Morisset et al., 2000).

In vivo, both neurochemical and electrophysiological studies indicate that the

activity of histaminergic neurons is maximal during arousal (Schwartz et al., 1991).

Neurons identified as histaminergic neurons exhibit a circadian rhythm of their

firing rate, highest during waking and falling silent during deep slow-wave or

paradoxical sleep (hence referred to as ‘‘waking-on’’ or ‘‘REM-oV’’ neurons;
Steininger et al., 1999; Vanni-Mercier et al., 2003). An important determinant of

this circadian rhythm of tuberomammillary histaminergic neuron activity is the

GABAergic inhibitory input from the VLPO which is activated during sleep

(Sherin et al., 1996, 1998; Yang and Hatton, 1997). GABAergic inhibitory post-

synaptic potentials are mediated by GABAA receptors located on histaminergic

neurons (Stevens et al., 1999). Histaminergic neurons contain GABA (Airaksinen

et al., 1992; Ericson et al., 1991b), but to what extent these receptors play an

autoinhibitory role is unclear. Histamine turnover in the brain is rapidly reduced

after administration of GABAergic sedative drugs such as barbiturates and
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benzodiazepines (Oishi et al., 1986; Pollard et al., 1974), presumably as a result of

their interaction with these GABAA receptors. In vivo microdialysis shows that

endogenous GABA as well as systemic administration of muscimol, pentobarbital,

diazepam, and halothane inhibits histamine release in the rat brain (Chikai et al.,

1993; Mammoto et al., 1997; Okakura-Mochizuki et al., 1996). GABAA receptors

present in the tuberomammillary nucleus also play a key role in the sedative

component of anesthesia. Microinjection of muscimol in the tuberomammillary

nucleus produces sedation in rats and cats (Lin et al., 1989; Nelson et al., 2002), and

systemic administration of muscimol, propofol, or pentobarbital decreases fos

expression in the tuberomammillary nucleus (Nelson et al., 2002).

Orexins directly excite the histaminergic neurons in vitro (Bayer et al., 2001;

Eriksson et al., 2001a). Most histamine neurons express mRNAs and immunore-

activity for both orexin receptors (Eriksson et al., 2001a; Marcus et al., 2001), but

the orexin 2 receptor seems mainly involved (Willie et al., 2003). Orexins released

from neurons emanating from the lateral hypothalamus enhance histamine neu-

ron activity. Orexin levels are not altered by circadian time but their arousal eVect
depends on activation of histaminergic neurons (Huang et al., 2001; Shigemoto

et al., 2004). In agreement, an altered histamine level was reported in orexin

receptor-2-mutated dogs, an animal model of narcolepsy (Nishino et al., 2001).

Several other systems activate or inhibit histamine neurons. Serotonin de-

polarizes histamine neurons and increases their firing rate in vitro by activation of

5-HT2C receptors and an NCX1 Naþ/Ca2þexchanger (Eriksson et al., 2001b).

Several types of serotonergic receptors are likely to modulate histamine neuron

activity in vivo (Laitinen et al., 1995a; Morisset et al., 1999; Oishi et al., 1992).

Ghrelin, a potent orexigenic peptide, activates histamine neurons by inhibiting

G-protein–coupled inward rectifier Kþ (GIRK) channels (Bajic et al., 2004;

Nakazato et al., 2001). Intracellular recordings from rat hypothalamic slices

indicate that morphine increases the firing of histaminergic neurons (Eriksson

et al., 2000), and histamine release in mouse cerebral cortex is enhanced by

stimulation of �-opioid receptors (Itoh et al., 1988). Morphine and �-opioid
receptor agonists (Chikai et al., 1994; Itoh et al., 1988) enhance histamine release

and turnover in vivo.

Inhibitory actions on histaminergic neurons have also been found. Besides

GABA, nociceptin inhibits the firing of histaminergic neurons by activating GIRK

channels (Eriksson et al., 2000). [3H]Histamine synthesis and release are inhibited in

various brain regions by stimulation of not only autoreceptors but also�2-adrenergic

receptors, M1-muscarinic receptors and �-opioid receptors (Schwartz et al., 1991).

Since these regulations are also observed with synaptosomes, all these receptors

presumably represent true presynaptic heteroreceptors. Agents inhibiting histamine

release in vitro via stimulation of presynaptic �2-adrenergic receptors reduce his-

tamine release and turnover in vivo (Gulat-Marnay et al., 1989a; Prast et al., 1991).

A similar inhibition is induced by activation of muscarinic heteroreceptors
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(Gulat-Marnay et al., 1989b; Oishi et al., 1990a; Prast et al., 1994). Whether these

heteroreceptors are tonically activated under basal conditions remains unclear:

systemic administration of antagonists of these receptors does not enhance histamine

turnover, but in vivo microdialysis studies show that their local perfusion increases

histamine release (Laitinen et al., 1995b; Prast et al., 1994).

An increase of tele-methylhistamine levels with age has been reported in human

cerebrospinal fluid (Prell et al., 1990). Changes in histamine neuron activity also

occur in various neuropsychiatric diseases. tele-Methylhistamine levels are in-

creased in the cerebrospinal fluid of schizophrenic patients (Prell et al., 1995).

Histamine levels are unaVected in the brain of MPTP-treated mice (Cumming

et al., 1989) but increased in the brain of patients with Parkinson’s disease, where

they are associated with a strong increase in histaminergic innervation in the

substantia nigra (Anichtchik et al., 2000b; Rinne et al., 2002). A reduced number

of histamine neurons (Nakamura et al., 1993) and a significant decrease of HDC

activity and histamine levels in the hypothalamus, hippocampus, and cortex

(Panula et al., 1998; Schneider et al., 1997) have been found in Alzheimer’s brains.

Similar deficits have been reported in frontal cortex of patients with Down

syndrome (Schneider et al., 1997).

E. PHYSIOLOGICAL ROLES OF HISTAMINERGIC NEURONS

Owing to the use of an increased number of experimental tools, for example,

histamine H3 receptor antagonists to activate histaminergic neurons (Arrang

et al., 1987), �-fluoromethylhistidine to block brain histamine synthesis (Garbarg

et al., 1980), mutant mice lacking L-histidine decarboxylase (Parmentier et al.,

2002) or the histamine H1 receptor (Inoue et al., 1996), the functional role of

histaminergic neurons has been considerably clarified during the recent years.

Since our initial proposal in 1977 (Schwartz, 1977), a large variety of studies

are now available to strengthen the view that the histaminergic system is one of the

major neuronal systems controlling cortical activation and wakefulness (Lin,

2000). In agreement, ablation of these neurons, inhibition of histamine synthesis,

release or action via the H1 receptor all decrease wakefulness and increase deep

slow-wave sleep; conversely, inhibition of histamine methylation or facilitation of

histamine release via H3 autoreceptor blockade all increase arousal. The major

part played by the H1 receptor in histamine-induced arousal, confirmed in mutant

mice lacking this receptor (Inoue et al., 1996), accounts for the sedating eVects of
the first generation of ‘‘antihistamines,’’ that is, antagonists which easily enter the

brain and are still ingredients of over-the-counter sleeping pills (Sangalli, 1997;

Tashiro et al., 2002).

The idea that activation of histaminergic neurons might improve cognitive

performances is consistent with their projections to brain areas such as the
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prefrontal and cingulate cortices or hippocampus, their projections to cholinergic

perikarya, their excitatory influences therein, and their positive role in wakeful-

ness. The procognitive and proattentional roles of histaminergic neuron activa-

tion were largely established in behavioral studies in rodents using thioperamide

or other H3 receptor inverse agonists (Hancock and Fox, 2004). For example,

H3 receptor antagonists/inverse agonists exert proattentional activity in a 5-trial

acquisition test performed in spontaneously hypertensive rat pups, often consid-

ered as a model for attentional deficits and impulsivity in ADHD patients (Fox

et al., 2002). These eVects of H3 antagonists are reversed by H1 antagonists, which

suggests that the latter are attributable to enhanced histamine release. In agree-

ment, H3 receptor knockout mice display enhanced spatial learning and memory

(Rizk et al., 2004).

Histaminergic neurons aVect secretion of several pituitary hormones and may

also participate in the hormonal responses to stress (Knigge and Warberg, 1991;

Schwartz et al., 1991). They are activated during various forms of stress and

heavily project to hypothalamic or limbic brain areas (e.g., amygdala or bed

nucleus of the stria terminalis) involved in these responses. Furthermore, it seems

that the activation of various subpopulations of histaminergic neurons within the

tuberomammillary nucleus varies according to the nature of stressful stimuli (Ito,

2000; Miklos and Kovacs, 2003).

A satiating role of endogenous histamine is strongly suggested by several

observations, although this view is not in agreement with all experimental data.

Weight gain is often experienced by patients receiving first-generation H1 anti-

histamines crossing the blood-brain barrier as well as antipsychotics or antide-

pressants displaying potent H1 receptor antagonist properties. Central infusion of

histamine reduces fat accumulation in leptin-resistant obese mice (Masaki et al.,

2001). Histamine neurons projecting to the hypothalamus may be responsible for

the food intake suppression induced by the fat cell-produced hormone, leptin.

In agreement, intracerebroventricular administration of leptin increases hypo-

thalamic histamine release (Morimoto et al., 2000), whereas histamine depletion

by �-fluoromethylhistidine treatment attenuates leptin-induced feeding inhibi-

tion (Yoshimatsu et al., 1999). Aged mice with gene disruption of either the

H1 receptor (Masaki et al., 2004) or the histidine decarboxylase gene (Fülop et al.,

2003) display adiposity; also bothmice display hyperleptinemia, which suggests the

existence of a regulatory loop between hypothalamic histamine neurons and

leptin-producing cells, the nature of which remains elusive. Following the initial

observation that the prototypical H3 receptor antagonist/inverse agonist thioper-

amide decreases food intake in rats (Sakata et al., 1990), studies using various

compounds belonging to this drug class have confirmed that increased brain

histamine release in rodents is associated with anorectic and antiobesity eVects
(Hancock, 2003). For instance, treatment of mice stabilized on a high-fat diet

with A-331440, a potent nonimidazole H3 receptor antagonist, decreased weight
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similarly to dexfenfluramine, reduced body fat, and normalized insulin-resistance

test (Hancock et al., 2004). Nevertheless, not all H3 receptor inverse agonists elicit

such eVects (Barbier et al., 2004), thioperamide-induced appetite suppression was

attributed to taste aversion to this compound (Sindelar et al., 2004); in a mouse

model of H3 receptor disruption, a paradoxical increase in body weight, food

intake, and adiposity, together with reductions in energy expenditure, has been

reported (Takahashi et al., 2002).

The anticonvulsant properties of endogenous histamine were initially sug-

gested from the occurrence of seizures in epileptic patients, particularly children,

following administration of high doses of H1 receptor antagonists crossing the

blood–brain barrier, even those devoid of anticholinergic activity (Sangalli, 1997).

The role of histaminergic neurons in preventing seizures, or even the develop-

ment of epileptogenesis, presumably, in most cases, via H1 receptor activation,

has been shown in several rodent models of epilepsy (Yokoyama, 2001).

In agreement, drug-induced changes in histamine synthesis, release, or metabolism

confirmed the role of the endogenous amine acting via the H1 receptor in pre-

venting seizure activity elicited in rodents by pentetrazole, transcranial electrical

stimulation, or amygdaloid kindling. Consistently, H3 antagonists inhibit

amygdaloid-kindled seizures, an eVect prevented by H1 antagonists, which sug-

gests the involvement of endogenous histamine (Kamei, 2001). These studies

suggest that enhancing brain histamine release via H3 receptor blockade should

represent a novel therapeutic approach for epilepsies.

III. Changes in the Histaminergic System in Schizophrenia

A. GENETIC STUDIES

HMT may be an important target to modulate histaminergic neurotransmis-

sion in neuropsychiatric disorders. Among the various HMT polymorphisms that

have been identified in the human gene (Aksoy et al., 1996; Chen et al., 2003a;

Wang et al., 2002), a common C314T transition located in exon 4 results in

decreased levels of enzyme activity (Chen et al., 2003a; Preuss et al., 1998) but was

not associated with schizophrenia (Yan et al., 2000).

The human H1 receptor gene contains an intron in the 5
0-flanking untranslated

region, close to the translation initiation codon, but the translated region is intronless

(DeBacker et al., 1998). Several polymorphisms have been identified in the promoter

and coding region, but none of them was found to be associated with schizophrenia

or response to clozapine (Hong et al., 2002; Mancama et al., 2000, 2002).

The 50-untranslated region of the human H2 receptor gene contains an intron

but the translated region is intronless. An initial study by Orange et al. (1996) has

264 JEAN-MICHEL ARRANG



reported six polymorphisms of the coding region in a UK population. Among

them, a A649G transition was found to be associated with schizophrenia. How-

ever, none of these variants could be detected in other studies. Several other

polymorphisms have been identified in various ethnic groups in the promoter

region and one (543G/A) in the coding region of the gene, but none of them was

found to be associated with schizophrenia or response to clozapine (Fukushima

et al., 2001; Ito et al., 2000; Mancama et al., 2000, 2002).

B. HISTAMINE NEURON ACTIVITY

Perfusion of the rat posterior hypothalamus, in which histaminergic cell

bodies are located, with dopamine D2 receptor agonists enhances histamine

release in vivo (Prast et al., 1993). In addition, methamphetamine, a psychotogenic

drug which enhances dopamine release in schizophrenic patients (Laruelle et al.,

1996), was shown to enhance histamine release in dialysates of rat striatum. This

response was completely blocked by haloperidol, an antagonist at dopamine

D2-like receptors (Ito et al., 1996). Furthermore, the behavioral sensitization

to dopamine agonists, a cardinal feature of schizophrenia, observed following

repeated administration of methamphetamine was accompanied by an enhanced

basal histamine release in rat striatum. This eVect was again blocked by haloper-

idol, reflecting an increased tonic dopaminergic influence on histaminergic

neurons (Ito et al., 1996).

Consistent with these findings on histamine release, methamphetamine also

enhances histaminergic neuron activity in mouse brain both acutely and in a

long-term fashion. A single administration of methamphetamine markedly in-

creases tele-MeHA levels, an index of histamine neuron activity, in the cerebral

cortex, striatum, and hypothalamus (Morisset et al., 2002). This enhancing eVect
of methamphetamine on tele-MeHA levels results from the stimulation of hista-

minergic neurons by endogenous dopamine activating selectively D2 receptors.

In agreement, this eVect was completely blocked by haloperidol, a D2/D3

receptor antagonist, but remained unchanged either after administration of

nafadotride used at a dose inducing a selective blockade of the D3 receptor

(Sautel et al., 1995), or in the brain of mice lacking functional D3 receptors.

Using [125I]iodosulpride as a ligand, D2-like receptor-binding sites have been

evidenced by autoradiography at the level of the tuberomammillary nucleus

(Bouthenet et al., 1987), an area in which D3 receptors could not be detected

(J. Diaz, personal communication). Therefore, endogenous dopamine may di-

rectly activate histamine neurons by interacting with D2 receptors located on

their perikarya or dendrites (Morisset et al., 2002), as also supported by retrograde

tracing studies combined with immunochemistry showing that dopamine-

containing axons emanating from the ventral tegmental area or substantia nigra
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project to the tuberomammillary nucleus (Ericson et al., 1989). D2 receptors

located on histaminergic nerve endings do not seem to be involved since apo-

morphine fails to significantly aVect histamine release from slices of rat cerebral

cortex (Schwartz et al., 1990).

Basal tele-MeHA levels were enhanced in various brain regions of sensitizedmice

showing that repeated administration of methamphetamine induces a long-lasting

enhancement of histaminergic neuron activity in the whole brain (Morisset et al.,

2002), which is consistent with the increase in histamine release observed in the

striatum of sensitized rats (Ito et al., 1996). Like the response to acute administration,

this eVect of chronic treatment with methamphetamine on tele-MeHA levels was

blocked by haloperidol, strongly suggesting that it resulted from a sensitized release

of dopamine fromdopaminergic aVerents, leading to a higher degree of activation of
D2 receptors present on histaminergic neurons.

In addition to the dopaminergic hypothesis of psychotic disorders, a hypo-

activity of glutamatergic transmission has been implicated in schizophrenia.

Initially, this glutamatergic hypothesis of schizophrenia was mainly based on

the schizophrenia-like psychotomimetic eVects of phencyclidine (PCP), which

are now mainly attributed to noncompetitive antagonism of the N-methyl-D-

aspartate (NMDA) receptor ( Javitt and Zukin, 1991; Jentsch and Roth, 1999).

Consistent with a hyperactivity of histamine neurons in psychotic disorders,

it was shown that PCP, in a dose range of 2–10 mg/kg, significantly enhances

tele-MeHA levels in various mouse brain regions (Itoh et al., 1985, 1986). It was

initially suggested that this enhancing eVect of PCP on histamine neuron activity

involved stimulation of opiate receptors via release of endogenous opioid peptides

because it was antagonized by a large dose of naloxone (Itoh et al., 1987)

and because direct stimulation of �-opioid receptors had been shown to increase

histamine turnover in the mouse brain (Itoh et al., 1988; Nishibori et al., 1985).

However, although it was initially reported to interact with a large number of

molecular target sites, PCP was subsequently found to act as a more potent

noncompetitive antagonist of the NMDA receptor (Anis et al., 1983) and many

data demonstrate that blockade of the NMDA channel is the primary mechanism

involved in the eVects elicited by PCP ( Javitt and Zukin, 1991; Jentsch and Roth,

1999). It could therefore be predicted from the previous studies with PCP that

NMDA receptor blockade could activate histamine neurons. Consistent with this

proposal, we showed that the eVect of PCP is mimicked by MK-801, another

NMDA open-channel blocker displaying high potency and selectivity (Wong

et al., 1986). MK-801 administration results in an enhancement of tele-MeHA

levels in the same range as that elicited by PCP and which occurred with a low

ED50 value (~0.1 mg/kg; Faucard et al., 2006). In addition, a significant increase

in hdc mRNA expression is induced by PCP administration both in the rostral

and caudal parts of the tuberomammillary nucleus (Faucard et al., 2006). There-

fore, the strong enhancement of tele-MeHA levels and hdc-mRNA expression
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induced in rodent brain not only by methamphetamine but also by NMDA

receptor antagonists further supports the existence of a hyperactivity of histamine

neurons in psychotic disorders.

Consistent with this proposal, Prell et al. (1995) showed that tele-MeHA levels

were significantly elevated in the cerebrospinal fluid of patients with chronic

schizophrenia, either under neuroleptic treatment or not, indicating that hyper-

activity of dopaminergic transmission is associated with an enhanced activity of

histaminergic neurons in the disease (Prell et al., 1995). In addition, the decrease

in H1 receptor-mediated responses consistently observed in schizophrenic pa-

tients (Nakai et al., 1991; Rauscher et al., 1980) is likely to result from the down-

regulation of postsynaptic H1 receptors induced by the chronic increase in

histamine release. In agreement, positron emission tomography (PET) studies

using [11C]doxepin revealed a significant decrease in H1 receptor binding in the

frontal and prefrontal cortices and the cingulate gyrus brain of schizophrenic

patients (Iwabuchi et al., 2005).

IV. Interactions of Antipsychotic Drugs with the Histaminergic System

A. INTERACTIONS OF APDS WITH HISTAMINE RECEPTORS

A large number of antipsychotics are potent H1 receptor antagonists and

block [3H]mepyramine binding to the receptor in rodent and human brain at

sub-therapeutic dosages (Quach et al., 1979; Richelson and Souder, 2000). The

major part played by the H1 receptor in the arousal induced by histamine

neurons suggests that this blockade of H1 receptors in brain is involved in the

sedative side-eVects of many antipsychotic drugs (APDs). In addition, the inhibi-

tory role of endogenous histamine on food intake mediated by the H1 receptor,

namely on the ventromedial nucleus (Sakata et al., 1997), probably accounts for

the weight gain that is often experienced by patients receiving antipsychotics

displaying potent H1-receptor antagonist properties. This eventually results in an

increased risk of developing a ‘‘metabolic syndrome’’ in patients chronically

treated with such agents (Kroeze et al., 2003; Richelson and Souder, 2000).

Assuming that blockade of the dopamine D2 receptor is the mechanism of action

of APDs, the ratio of Ki’s to this receptor and the H1 receptor of various

compounds, which varies largely (Table II), should reflect their ability to block

the H1 receptor at therapeutic dosages and, thereby, exert sedative and pro-

obesity side eVects. Hence, for instance, olanzapine is one of the most potent

H1 receptor antagonist known so far (Richelson and Souder, 2000) and its

marked sedative and weight-gain side-eVects are well established. In agreement,

sedative APDs at therapeutic dosages were shown to occupy a significant fraction
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of cerebral H1 receptors in living rodents (Quach et al., 1979) and weight-gain

propensity of several APDs in patients were significantly correlated to their

relative potencies at these receptors (Kroeze et al., 2003).

An intriguing observation is that several APDs and a number of tricyclic

antidepressants are very potent and competitive inhibitors of the H2 receptor-

linked adenylyl cyclase on brain membranes (Green and Maayani, 1977; Green

et al., 1977; Kanof and Greengard, 1978). This has led to the suggestion that

blockade of the H2 receptor might account at least partially for the clinical

activity. However, for unclear reasons, such a potent blockade could not be

observed on intact cell preparations (Dam Trung Tuong et al., 1980).

Whereas typical APDs were ineVective at the H3 receptor, the atypical APD

clozapine has been shown to block the rodent H3 receptor as evidenced on the

release of noradrenaline or serotonin from brain slices and in radioligand binding

assays to the recombinant or native receptor (Alves-Rodrigues et al., 1996;

Kathmann et al., 1994; Lovenberg et al., 2000; Morisset et al., 1999). This led to

the speculation that some of its ‘‘atypical’’ properties might be due to H3 receptor

antagonism. However, consistent with a species-related heterogeneity of H3

receptors (Schwartz et al., 2001), clozapine does not significantly interact with

the recombinant human H3 receptor (Lovenberg et al., 2000).

Clozapine displays a submicromolar aYnity at the human H4R (de Esch et al.,

2005), but plasma and brain concentrations associated with clinical responses

meet or exceed these values. Even more interesting is that clozapine, which acts

as an antagonist at various receptors, behaves as a full agonist at the recombinant

human H4R and at the H4R present on human eosinophils (Buckland et al., 2003;

Liu et al., 2001a,b; Oda et al., 2000). Because the H4R is mainly expressed on

hematopoietic cells, one might therefore speculate that agranulocytosis, which

often limits clozapine eVectiveness, is related to H4R activation.

TABLE II

COMPARED POTENCIES (Ki, nM) OF SEVERAL APDS AT HUMAN HISTAMINE H1 AND

DOPAMINE D2 RECEPTORS

Compounds Dopamine D2 Histamine H1 Ratio D2/H1

Clozapine 210 3.1 68

Haloperidol 2.6 260 0.01

Olanzapine 20 0.087 230

Quetiapine 770 19 40

Risperidone 3.8 5.2 0.7

Sertindole 2.7 320 0.01

Ziprasidone 2.6 4.6 0.6

Values are derived from Richelson and Souder (2000).
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B. MODULATION OF HISTAMINE NEURON ACTIVITY BY APDS

Consistent with a tonic stimulation of histamine neurons by endogenous dopa-

mine interacting with D2 receptors present on histaminergic cell bodies, typical

APDs, for example, haloperidol, decrease histamine neuron activity (Morisset et al.,

1999).

In contrast, atypical neuroleptics, for example, clozapine, enhance histamine

turnover, an eVect related to 5-HT2 receptor blockade. Ketanserin, a preferential

5-HT2A receptor antagonist, mimicked the enhancing eVect of atypical antipsy-
chotics on tele-MeHA levels inmouse cerebral cortex, striatum, and hypothalamus.

DOI, a 5-HT2A/2C receptor agonist, did not modify tele-MeHA level but strongly

reversed the eVect of clozapine (Morisset et al., 1999). These findings therefore

show that endogenous serotonin tonically inhibits HA neurons via 5-HT2A recep-

tors, an eVect blocked by clozapine. These 5-HT2A receptors could be located on

HA neurons themselves, on interneurons, or nearby axon terminals impinging on

the formers. In agreement with the blockade of 5-HT2A receptors by atypical

neuroleptics, the eVect of clozapine was not additive with that of ketanserin. This

strongly suggests that the activation of histaminergic neurons by clozapine (and

other novel antipsychotics) is entirely attributable to 5-HT2A receptor blockade

(Morisset et al., 1999).

A recognized advantage of atypical APDs compared to typical APDs is their

arousing and procognitive eVects resulting in a significant eYcacy against nega-

tive symptomatology. The positive functional role attributed to histaminergic

neurons in wakefulness, attention, and cognition suggests that this property of

atypical antipsychotics could be related at least partially to their unique ability to

activate histamine neurons.

V. Role of Histaminergic Neurons in Schizophrenia

Overdose of a variety of classical H1-antagonists was repeatedly reported to

result in toxic psychoses with hallucinations resembling schizophrenia and the

hallucinogenic potential of these drugs has even led to abuse (Sangalli, 1997). The

increase in dopamine release and the blockade of dopamine uptake induced by

such compounds in the striatum, rather than blockade of H1 receptors, presum-

ably explain their abuse potential (Dringenberg et al., 1998). In agreement,

dopamine turnover remains unchanged in the forebrain from H1 receptor

knockout mice (Yanai et al., 1998).

In several open-label clinical trials, famotidine, an H2R antagonist with

limited brain penetration, was found to display an antipsychotic eYcacy (Kaminsky
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et al., 1990; Oyewumi et al., 1994; Rosse et al., 1996), a finding which remains to be

confirmed in controlled studies.

In the search of new antipsychotic agents, increasing evidence supports the

therapeutic potential of H3 receptor antagonists/inverse agonists for the symptom-

atic treatment of schizophrenia. The latters do not change spontaneous locomotor

activity when they are used alone (Clapham and Kilpatrick, 1994; Imaizumi and

Onodera, 1993; Pillot et al., 2002b) and do not induce locomotor sensitization

(Komater et al., 2003). However, the locomotor activation elicited in rat and

mouse by various dopaminergic agonists such as amphetamine, methamphet-

amine, and apomorphine is attenuated by thioperamide and ciproxifan, two

standard H3 receptor antagonists/inverse agonists (Clapham and Kilpatrick,

1994; Morisset et al., 2002). Also ciproxifan, a potent H3 receptor antagonist,

significantly decreases the stereotypies induced in mice by methamphetamine

and apomorphine (Sadakhom, C.; Frances, H., and Arrang, J. M. in prepara-

tion). Consistent with these findings, the eVect of methamphetamine on locomo-

tor activity and stereotypic behavior was less pronounced in H3 receptor

knockout mice (Toyota et al., 2002).

In another animal model of psychosis (Andine et al., 1999; Carlsson and

Carlsson, 1990), the locomotor hyperactivity induced in rodents by the NMDA

receptor antagonist MK-801 is also markedly attenuated by H3 receptor antago-

nists/inverse agonists (Faucard et al., 2006).

In DBA/2mice in which sensorimotor-gating deficits, which are considered as

cardinal signs of the disease, occur naturally, H3 receptor antagonists/inverse

agonists also improve gating as shown by the increase that they induce in prepulse

inhibition of startle and N40 auditory-evoked response (Browman et al., 2004; Fox

et al., 2005).

The neurochemical mechanisms underlying these antipsychotic-like eVects
induced by H3 receptor blockade remain unknown. Facilitation of histamine

release via H3 autoreceptor blockade may be involved. However, a histamine

neuron hyperactivity being already observed in schizophrenia, this would imply

that histaminergic neurons are not directly involved in psychotic symptoms but

are involved in a compensatory manner. The further enhancement of histamine

neuron activity induced by H3 receptor antagonists/inverse agonists would

therefore attenuate psychotic symptoms. Consistent with such a hypothesis, the

time course of hyperlocomotion and activation of histamine neurons induced by

methamphetamine do not parallel (Morisset et al., 2002), and enhancement of

histamine release induced by histidine loads or inhibitors of histamine catabolism

have also been reported to reduce methamphetamine-induced locomotor activity

(Itoh et al., 1984; Ito et al., 1997).

Alternatively, a direct involvement of histamine in schizophrenic symptoms

cannot be ruled out. H3 receptors are present at high densities on many perikarya
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and/or dendrites of intrinsic neurons in the cerebral cortex, basal ganglia, and

limbic areas (Pillot et al., 2002a,b). Therefore, the hyperactivity of histamine

neurons reported in schizophrenia and in animal models of the disease might

enhance the activation of these postsynaptic H3 receptors. Their blockade would

lead to antipsychotic properties of H3 receptor antagonists.

Whatever themechanisms involved, recent data show the existence of strong but

complex functional interactions between endogenous histamine and dopamine in

the brain. Ciproxifan used alone has no eVect but strongly modulates the eVects of
methamphetamine on neuropeptide mRNA expression not only in the caudate-

putamen but also in the nucleus accumbens (Pillot et al., 2003). The synergism

between the two drugs on enkephalin neurons and their antagonism on substance

P/dynorphin neurons may suggest direct interactions between H3 receptors and

dopamine receptors. H3 receptor activation inhibits dopamine D1 receptor-

mediated cAMP formation in the rat striatum (Sanchez-Lemus and Arias-Montano,

2004) and the expression of H3 receptors is influenced by endogenous activation of

D1 receptors (Ryu et al., 1996). Presynaptic H3 heteroreceptors inhibit dopamine

synthesis (Molina-Hernandez et al., 2000) and release (Schlicker et al., 1993).

Although they do not appear to regulate dopamine neuron activity in vivo under

basal conditions (Imaizumi and Onodera, 1993; Miyazaki et al., 1997; Oishi et al.,

1990b), the inhibition of dopamine neuron activity by H3 heteroreceptors may

become operating in schizophrenia because of an enhanced histamine release, as

shown by the potentiation of methamphetamine-induced accumbal dopamine

release induced by H3 receptor antagonists/inverse agonists (Munzar et al., 2004).

In addition, in freely moving rat microdialysis studies, H3 receptor antagonists

do not enhance dopamine release in striatum but enhance it in frontal cortex (Fox

et al., 2005).

Both pharmacological interactions between H3 and D2 receptors and phar-

macokinetic drug-drug interactions may account for the complex interactions

reported between H3 receptor antagonists/inverse agonists and neuroleptics. In

one study, the imidazole derivative ciproxifan potentiated the enkephalin, neu-

rotensin, and c-fos expression induced in rat caudate-putamen and nucleus

accumbens (Pillot et al., 2002b). By contrast, thioperamide, another imidazole

compound, decreased haloperidol-induced c-fos expression in the rat dorsolateral

striatum but not in the nucleus accumbens (Hussain et al., 2002). Similar dis-

crepancies were also found in behavioral studies. Ciproxifan and thioperamide

potentiated haloperidol-induced catalepsy in the rat (Pillot et al., 2002b; Zhang

et al., 2005) but not in the mouse (Morisset et al., 1999). In the rat, the potentiation

of catalepsy was likely to result at least partially from an inhibition of cytochrome

P450 enzymes by imidazole derivatives (Yang et al., 2002), and two nonimidazole

H3 receptor antagonists/inverse agonists tended to attenuate risperidone-

induced catalepsy (Zhang et al., 2005).
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VI. Conclusions

The present chapter testifies how our knowledge of the molecular neurobiol-

ogy of cerebral histaminergic systems and their implications in physiological

functions, for example, arousal, cognition, or control of food intake, has pro-

gressed during the last years. This appears as the result of the development of

reliable research tools such as selective ligands for the various receptor subtypes

or genetically modified mice. Recent findings support the possible implication of

the histaminergic system in schizophrenia and therapeutic utility and/or side

eVects of APDs. H3 receptor antagonists/inverse agonists raise a great interest as

innovative therapeutics in various CNS disorders including schizophrenia and

are currently undergoing clinical trials. The results of these clinical studies are

now awaited to confirm this potential interest and they should teach us a lot

about the role of the histaminergic system in the human brain.
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Recent epidemiological studies and advances in understanding of brain

cannabinoid function have renewed interest in the long-recognized association

between cannabinoids and psychosis. This chapter presents evidence supporting

and refuting the association between cannabinoids and psychosis. Cannabinoids

can induce acute transient psychotic symptoms or an acute psychosis in some

individuals. What makes some individuals vulnerable to cannabinoid-related

psychosis is unclear. Also clear is that cannabinoids can also exacerbate psychosis

in individuals with an established psychotic disorder, and these exacerbations

may last beyond the period of intoxication. Less clear is whether cannabis causes a

persistent de novo psychosis. The available evidence meets many but not all the

criteria for causality, including dose–response, temporality, direction, specificity,

and biological plausibility. On the other hand, the large majority of individuals

exposed to cannabinoids do not experience psychosis or develop schizophrenia

and the rates of schizophrenia have not increased commensurate with the increase

in rates of cannabis use. Similar to smoking and lung cancer, it is more likely that

cannabis exposure is a component cause that interacts with other factors, for

example, genetic risk, to ‘‘cause’’ schizophrenia. Nevertheless, in the absence of

known causes of schizophrenia, the role of component causes such as cannabis
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exposure (exogenous hypothesis) is important and warrants further study. There is

also tantalizing evidence from postmortem, neurochemical, and genetic studies

suggesting CB1 receptor dysfunction (endogenous hypothesis) in schizophrenia that

warrants further investigation. Further work is necessary to identify those factors that

place individuals at higher risk for cannabinoid-related psychosis, to identify the

biological mechanisms underlying the risks and to further study whether CB1

receptor dysfunction contributes to the pathophysiology of psychotic disorders.

I. Introduction

. . . acute psychotic reactions, generally lasting but a few hours, but occasionally as long as a

week; the reaction seemed dose related and its main features included paranoid ideation,

illusions, hallucinations, delusions, depersonalization, confusion, restlessness and excitement.

There can be delirium, disorientation and marked clouding of consciousness . . .

In ‘DuHaschisch et d l’alientationmentale’ J. J. Moreau de Tours (1845) (Moreau, 1973).

An association between cannabis and psychosis has long been recognized.

However, recent advances in the understanding of cannabinoid receptor function

have renewed in the association between cannabis and psychosis. In addition to

epidemiological studies, there are case reports of psychosis following cannabis

use, reports of psychosis in surveys of cannabis users from community samples,

and pharmacological studies with various cannabinoid compounds. These data

are relevant to an exogenous hypothesis according to which the consumption of

cannabinoid compounds is associated with psychotic disorders. We also suggest

an endogenous hypothesis according to which brain cannabinoid receptor (CB1)

dysfunction may contribute to the pathophysiology of psychosis and/or schizo-

phrenia, and further, that the putative CB1 receptor dysfunction maybe unrelat-

ed to the consumption of cannabinoid compounds. These two hypotheses are by

no means mutually exclusive, and may in fact interact.

The data supporting an association between cannabis consumption and the

manifestation of psychotic symptoms in humans is now reviewed. However, a

review of the literature will not be complete without a discussion about the con-

stituents of cannabis. The principal active ingredient of cannabis is delta-

9-tetrahydrocannabinol (�-9-THC). However, in addition to �-9-THC, herbal

cannabis contains nearly 70 cannabinoid compounds, including cannabidiol (CBD),

�-8-tetrahydrocannabinol, cannabinol, cannabigerol, and also terpenoids and

flavonoids (Elsohly and Slade, 2005). These constituent compounds may modulate

the eVects of �-9-THC and may also have ‘‘entourage’’ eVects (Mechoulam and

Ben-Shabat, 1999; Russo and McPartland, 2003). The principal active metabolite

of �-9-THC, 11-hydroxy-THC is more potent than �-9-THC. The time course

of 11-hydroxy-THC blood levels correlates well with the psychological eVects of
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inhaled and oral �-9-HC reviewed in Agurell et al. (1986). CBD may oVset some

�-9-THC eVects by its anxiolytic eVects (Guimaraes et al., 1994; Zuardi et al., 1982),

antipsychotic-like eVects (Zuardi et al., 1991, 1995, 2006), and may block the

conversion of �-9-THC to the more psychoactive 11-hydroxy-THC (Bornheim

et al., 1995). Therefore, the net eVect of herbal cannabis is a composite of its

constituents. The CBD content of cannabis varies greatly and some samples of

cannabis have been reported to be devoid of CBD (Pitts et al., 1990, 1992). Thus, a

relatively lower CBD content of cannabis has been implicated in the occurrence of

psychotic and anxiety reactions with cannabis use (Solomons and Neppe, 1989;

Solomons et al., 1990). An example is South African cannabis, also known as

dagga, which has very low levels of CBD compared to other varieties of cannabis

obtained elsewhere. Naturalistic studies suggest an association between dagga

consumption and high rates of psychotic symptom (Solomons and Neppe, 1989;

Solomons et al., 1990).

There are some data from studies with synthetic cannabinoids including

dronabinol, nabilone, and levonantradol that are informative about the psychotic

adverse eVects of cannabinoids (Fig. 1). Dronabinol is synthetic �-9-THC. The

9-trans-ketocannabinoid Nabilone (CesametÒ) is a synthetic analogue of �-9-

THC that was developed as an antiemetic and is available in Europe and Canada.

Levonantradol, also a synthetic cannabinoid, was developed as an analgesic agent

but abandoned because of a high incidence of intolerable behavioral side eVects.
Evidence for an association between cannabis and psychosis comes from several

sources, including case series of psychosis following cannabis use, autobiographi-

cal accounts, and surveys of cannabis users in the general population, epidemiological

studies, and pharmacological studies with various cannabinoid compounds.

II. Ancedotal Reports

A. AUTOBIOGRAPHICAL ACCOUNTS

There are several exquisitely detailed autobiographical accounts of the eVects
of cannabinoids. In perhaps one of the first detailed accounts of cannabis

eVects, Moreau de Tours (1845) described acute, transient, dose-related psychotic

reactions lasting hours to days following hashish use (Moreau, 1973). The reaction

was characterized by paranoid ideation, illusions, hallucinations, delusions, deper-

sonalization, confusion, restlessness, and excitement. Among other eVects of

cannabis, Marshall described grandiosity (‘‘my powers became superhuman, my

knowledge of the universe was infinite, and so on’’) (Marshall, 1897). At higher

doses he described disturbing hallucinations (‘‘demons’’). While informative, these

individual accounts have limited generalizability.
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B. SURVEYS OF CANNABIS USERS

Some of the limitations of individual accounts can be addressed in surveys

of large groups of cannabis users from community samples. Thomas surveyed

1000 New Zealanders aged 18–35 years about the eVects of cannabis (Thomas,

1996). Thirty-eight percent of respondents admitted to cannabis use. The most

common adverse eVects included anxiety and panic attacks (22%) followed by

psychotic symptoms such as auditory hallucinations and persecutory ideas (15%).

A significant relationship between panic attacks and psychosis was found. How-

ever, the survey, failed to find a dose–response relationship between the levels of

cannabis use and the occurrence of these symptoms. As discussed later, there are

challenges to accurately estimate dose–response relationships from naturalistic

data. In a study of young Australian cannabis users (n ¼ 268), about 21%

reported negative eVects that included paranoia (Reilly et al., 1998). Green et al.

(2003) reviewed pooled data (n > 2500) from surveys of cannabis users that used

closed questions and found that 51.4% of the sample reported paranoia whereas

19.8% reported hallucinations while under the influence of cannabis. Thus,

psychotic symptoms are not uncommonly experienced under the influence of

cannabis. However, survey data too have their limitations, including sampling

bias, reliance on self-report, lack of structured scales to assess psychosis, lack of

reliable dose–response data, and so on.

At this point, it would be important to make the distinction between a psychotic

disorder and psychotic symptoms, since these terms are somewhat poorly defined in

the literature. Psychotic disorder refers to a condition characterized by persistent

psychotic symptoms accompanied by functional deficits. Further, most discussions

associating cannabis and psychosis have referred mainly to positive symptoms

(hallucinations, perceptual alterations, delusions, paranoia, ideas of reference,

disorganized speech, and disorganized behavior). However, any discussion of

schizophrenia would be incomplete without reference to negative symptoms

(emotional withdrawal, blunted aVect, amotivation, alogia, and social withdrawal)

and cognitive deficits (deficits in memory, attention, and executive function).

Furthermore, the inclusion of schizophrenia-spectrum conditions such as schizo-

typy makes for some interesting findings. Several groups have found higher scores

on measures of schizotypy, positive psychotic symptoms, and perceptual alterations

in cannabis users (Dumas et al., 2002; Nunn et al., 2001; Skosnik et al., 2001).

Verdoux et al. (2003c) studied the association between cannabis use and psychotic

dimensions in a nonclinical sample (571 college students) 18–51 years of age and

found an association between cannabis use and positive and negative dimensions of

psychosis and a correlation between the frequency of use and intensity of symptoms.

This relationship appeared to be specific for cannabis use as alcohol use was not

associated with dimensions of psychosis. Further the association with cannabis use

was specific to positive and negative symptoms of psychosis but not depression.
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Another limitation of cross-sectional surveys is that they are not very informa-

tive on the direction of causality. Thus, cannabis use may be a consequence rather

than a cause of psychosis or cannabis use and psychosis may be independently

associated with some common risk factor(s). Prospective studies have addressed

some of these limitations. Verdoux et al. (2003a) investigated the impact of cannabis

use on the onset of psychotic experiences using an experience sampling method, a

self-reported structured diary technique that has been validated as a method of

collecting information on psychotic experiences in daily life. Subjects were in-

structed to respond to randomly programmed cues from a wristwatch to describe

their present substance use and psychotic experiences five times a day over

7 consecutive days. There was a clear temporal relationship between cannabis

use and the acute occurrence of psychotic-like abnormal perceptions.

C. PSYCHOSIS IN CANNABIS USERS FROM COMMUNITY SAMPLES

Using data from the US Epidemiological Catchment Area (ECA) study, Tien

and Anthony (1990) found that daily cannabis use doubled the risk of reporting

psychotic symptoms after adjusting for baseline alcohol use and psychiatric

diagnosis. Similarly, in the Australian National Survey of Mental Health and

Well-Being, 17.2% of individuals diagnosed with cannabis dependence screened

positive for a psychotic disorder (Degenhardt et al., 2001).

D. NATURALISTIC CASE SERIES

In a review, Hall and Degenhardt (2004) found 397 cases of ‘‘cannabis

psychosis’’ reported in the literature. In perhaps the earliest case series, Chopra

and Smith (1974) described 200 patients admitted to a psychiatric hospital in

India for psychosis following cannabis use (Chopra, 1973; Chopra and Smith,

1974). The psychosis was typically preceded by ingestion of large doses

of cannabis and was characterized by hallucinations, paranoia, delusions, deper-

sonalization, emotional lability, amnesia, confusion, and disorientation. One-

third of the patients reportedly had no previous psychiatric history, suggesting

that the heavy cannabis abuse in these subjects was not a sign of preexisting

psychopathology. Further, the use of more potent forms of cannabis, for example,

hashish, was associated with a quicker onset of psychosis suggesting a dose–

response. Similar case series have been reported from other geographical areas,

including Denmark (Arendt et al., 2005), Sweden (Bernhardson and Gunne,

1972), the Carribean (Harding and Knight, 1973), the United Kingdom (Carney

et al., 1984; Mathers et al., 1991), the United States (Talbott and Teague, 1969b;

Tennant and Groesbeck, 1972a), Scotland (Wylie et al., 1995), and South Africa

(Rottanburg et al., 1982).
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Most of the these studies suggest that psychotic episodes resolved completely

when cannabis use stopped but recurred with the resumption of cannabis use

reviewed in Hall and Solowij (1998) and typically resolved fairly quickly in

comparison with endogenous psychoses (Basu et al., 1999; Carney et al., 1984;

Chaudry et al., 1991; Cohen, 1994; Kolansky and Moore, 1971a; Rottanburg

et al., 1982; Talbott and Teague, 1969a; Thacore, 1973; Thacore and Shukla,

1976; Wylie et al., 1995). Further, some studies suggested that patients with

preexisting mental problems had a less favorable outcome (Bernhardson and

Gunne, 1972; Bromberg, 1939; Chopra and Smith, 1974; Palsson et al., 1982;

Tennant and Groesbeck, 1972b).

In most of the studies discussed thus far, cases/patients were followed no

greater than 3 months after remission of psychosis and hence, long-term outcome

of these cases could not be conclusively determined. Arendt et al. (2005) reported

the long-term outcome of a cohort of patients treated for cannabis-induced

psychotic disorder extracted from the Danish Psychiatric Central Register. All

patients treated for ICD-10 cannabis-induced psychotic disorder between 1994

and 1999 who had never been previously treated for psychosis (n ¼ 535) were

examined for the development of schizophrenia-spectrum disorder in the ensuing

years (Table I). Schizophrenia-spectrum disorders were diagnosed in 44.5% of

the sample. When the diagnosis was broadened to include new psychotic episodes

of any type, the diagnosed sample increased to 77.2%. Further, only 15.9% of

individuals were not in psychiatric care at the time of long-term follow-up. About

half of the patients received the diagnosis of schizophrenia-spectrum disorder

more than a year after seeking treatment for a cannabis-induced psychosis. The

patients had an earlier age of onset of schizophrenia compared to a control

group without a history of cannabis-induced psychosis. This study is the first to

show that such psychotic symptoms induced by cannabis may be the first mani-

festations of a long-term psychotic disorder such as a schizophrenia-spectrum

disorder.

These case series have some shortcomings. First, it is possible that the

individuals who developed psychosis after using cannabis were not ‘‘healthy’’

and carried some risk for developing a psychotic disorder. Here, it is important to

point out that other than family history there are no other known risks factors

that are either specific and/or sensitive predictors of the future development of a

psychotic disorder. Further, even though having a first-degree relative diagnosed

with schizophrenia increases the risk of developing schizophrenia by 9–18 times,

more than 80% of individuals diagnosed with schizophrenia do not have

an aVected first-degree relative and over 60% do not have an aVected first-

or second-degree relative (Gottesman and Shields, 1982). As discussed later,

genetic factors may influence the risk of psychosis associated with cannabis exposure

(Caspi et al., 2005). Second, since individuals who use cannabis often co-use other

drugs, it is unclear whether the use of other drugs contributed to the development
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of psychosis. Third, only a minority of case series studies employed standardized

measures of psychosis. Fourth, the amount of cannabis use preceding the psy-

chotic episode was not quantified limiting any speculation about dose–response

relationships. In contrast, the temporal relationship between cannabis use and

psychosis, the fact that psychosis resolved with abstinence from the drug and

recurred with renewed use, lends support to the notion that the relationship

between cannabis exposure and the development of psychosis is not merely

coincidental.

On the basis of some similarities between the phenomenology of psychosis

associated with cannabis use and the psychosis of schizophrenia, some (Chaudry

et al., 1991; Ghodse, 1986; Mathers et al., 1991; Rolfe et al., 1993; Rottanburg

et al., 1982; Thacore, 1973; Thacore and Shukla, 1976) but not others (Hall and

Degenhardt, 2004; Imade and Ebie, 1991; McGuire et al., 1994, 1995; Thomas,

1993; Thornicroft, 1990) have argued for the inclusion of ‘‘cannabis psychosis’’

as a distinct nosological entity. Arguments challenging the validity of ‘‘cannabis

psychosis’’ as a distinct diagnostic entity should not be confused with the debate

on the association between cannabis and psychosis.

As mentioned earlier, it is diYcult to derive dose–response relationships from

naturalistic data for a number of reasons. The reliability of self-reported, long-

term, retrospective estimates of cannabis use is unclear. Individuals who use

cannabis will often share a ‘‘joint’’ with one or more individuals, thus estimating

TABLE I

RISK OF MENTAL ILLNESS FOLLOWING HOSPITALIZATION FOR CANNABIS-INDUCED PSYCHOSIS PATIENTS

TREATED FOR MENTAL OR BEHAVIORAL DISORDERS AFTER INDEX POINT (N ¼ 535)

Diagnosisa
Within 3 years

n (%)

After 3 years

n (%)

Total follow-up

n (%)

Schizophrenia-spectrum disorderb 197 (36.8) 41 (7.7) 238 (44.5)

Persistent delusional disorder (F22) 18 (3.4) 4 (0.7) 22 (4.1)

Other or non-organic psychotic

disorder (F28/F29)

5 (0.9) 3 (0.6) 8 (1.5)

Bipolar aVective disorder 12 (2.2) 6 (1.1) 18 (3.4)

Acute and transient psychotic

disorder

28 (5.2) 7 (1.3) 35 (6.5)

Cannabis-induced psychosis 78 (14.6) 1 (0.2) 79 (14.8)

Other drug-induced psychosis 11 (2.1) 2 (0.4) 13 (2.4)

Depression, anxiety or personality

disorder

29 (5.4) 8 (1.5) 37 (6.9)

No treatment 85 (15.9)

Total 535 (100)

aPatients are entered only once, in a hierarchical manner as described in the method section.
bSchizophrenia (ICD–10 code F20), schizotypal disorder (F21) or schizoaVective disorder (F25).
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the dose consumed by the individual may be diYcult. Cannabis is consumed in

many diVerent ways, for example, ‘‘joints,’’ ‘‘bongs,’’ and so on, which are not

equivalent. The estimates of the number of lifetime exposures cannot accurately

reflect the actual dose of �-9-THC that is consumed. Finally, the �-9-THC

content of cannabis varies greatly. The Potency Monitoring program, a collabo-

ration between the University of Mississippi and the National Institute on

Drug Abuse (NIDA), provides analytical data about the potency of confiscated

marijuana seized in the United States. In the most recent report covering the last

10 years on �30,000 cannabis samples, 207 hashish samples, and 86 hash oil

samples there appears to be an upward trend in the average THC content of

confiscated cannabis (Mehmedic et al., 2005). The �-9-THC content of cannabis

doubled from 3.48% in 1994 to 7.08% in 2004. While there was no consistent

increase in�-9-THC content in hashish samples from 1994 to 1999, the average

potency of hashish samples increased from 4.16%�-9-THC in 2000 to 11.2% in

2004. No potency trends were observed for hash oil samples. Finally, there was

no change in the average levels of the other cannabinoids (CBD, CBC, CBG, and

CBN) in the cannabis samples over the reported time frame. Similarly, the

average �-9-THC content of Dutch cannabis, Dutch hashish, and imported

hashish has significantly increased between 1999 and 2005 (Niesink et al., 2005).

For example, in 2005, the average �-9-THC content of Dutch home-grown

cannabis (Nederwiet) was 17.73%, and was nearly three times higher than that of

imported cannabis (6.7% �-9-THC). Dutch hashish (Nederhasj) contained 26%

�-9-THC in 2005, compared with 16.9% THC in imported hashish. In summary,

deriving accurate dose–response from naturalistic data may have significant

limitations.

III. Epidemiological Studies

Epidemiological studies have provided the major contribution to the evidence

supporting an association between cannabis and psychosis (Table II). The study

that first brought significant attention to the topic was a large historical, longitu-

dinal cohort study of all Swedes conscripted between 1969 and 1970 (Andreasson

et al., 1987). Since Sweden mandates military service, 97% of males aged

18–20 years were included. The relationship between self-reported cannabis use

at the time of conscription and psychiatric hospitalization for schizophrenia in the

ensuing 15 years was examined. A dose–response relationship was observed be-

tween cannabis use at conscription (age 18 years) and schizophrenia diagnosis in the

following 15 years. Individuals who reported having used cannabis more than

50 times were 6 times more likely than nonusers to have been diagnosed with

schizophrenia 15 years later. Adjusting for other relevant risk factors including
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TABLE II

EPIDEMIOLOGICAL STUDIES

References N Design Instrument

Age range

at f/u (years) Outcome Adjusted Risk

Arendt et al. 2005 535 Longitudinal follow up

of cannabis-induced

psychosis (Denmark)

Registry Not specified

(estimated

as 32 years)

New psychotic episode of any type

diagnosed in 77.2%. Schizophrenia-spectrum

disorders diagnosed in 44.5%

–

Earlier onset of

schizophrenia

Ferdinand et al. 2005 1580 Prospective cohort

(The Netherlands)

CIDI CBCL 18–30 Psychotic symptoms Lifetime CB use 2.8

Henquet et al. 2005 2437 Prospective cohort

(Germany)

M-CIDI 18.3–21.8 Any psychotic symptom Lifetime CB use 1.7

Stefanis et al. 2004 3500 Cross-sectional cohort

of adolescents

(Greece)

CAPE PDI 18 Positive and negative

symptoms

Lifetime CB use

until age 19 years

4.3

Fergusson, 2003 1011 Birth cohort

(Christchurch)

SCL90 21 Psychotic symptoms DSM-IV CB

dependence

at 21 years

1.8

Arseneault et al. 2002 759 Longitudinal,

prospective, birth

cohort (Dunedin)

DSM-IV 26 Schizophrenia and

schizophreniform

disorders

Lifetime CB use

until age 15 and

18 years

3.12

Weiser et al. 2002 50,413 Longitudinal conscript

cohort (Israel)

registry 4–15 Hospitalization for

schizophrenia

Lifetime drug use

at 16–17 years

2

van Os et al. 2002 4095 Longitudinal

population-based

3 year follow-up

(The Netherlands)

CIDI, SCID 18–64 Any psychotic symptoms Lifetime CB use

at 16–17 years

2.76

Zammit et al. 2002 50,053 Longitudinal conscript

cohort (Sweden)

Registry 45–47 Hospitalization for

schizophrenia

>50 exposures to

CB at age 18 years

3.1

Andreasson et al. 1987 45,570 Longitudinal conscript

cohort (Sweden)

Registry 33–35 Hospitalization for

schizophrenia

>50 exposures to

CB at age 18 years

2.3

2
9
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psychiatric diagnosis other than psychosis at conscription reduced but did not

eliminate the higher risk (odds ratio ¼ 2.3) of schizophrenia conferred by

cannabis use.

A reanalysis and extension of the same Swedish conscript cohort reconfirmed

that heavy cannabis users by the age of 18 years were 6.7 times more likely than

nonusers to be hospitalized for schizophrenia in the following 27 years (Zammit

et al., 2002). This study addressed the confounding eVects of concomitant use of

other drugs of abuse, premorbid personality traits, and cannabis use as a form

of self-medication of schizophrenia. The adjusted odds ratio for cannabis use and

schizophrenia remained significant (1.2), despite adjusting for a number of con-

founds, including low IQ, urbanicity, cigarette smoking, poor social integration,

function, and stimulant use. Further, after controlling for the possibility that

cannabis use is a consequence of prodromal manifestations of psychosis by

excluding subjects who developed schizophrenia within 5 years of conscription,

the finding of an increased risk of schizophrenia conferred by cannabis use

persisted. The authors concluded that cannabis use was associated in a causal

way with an increased risk of developing schizophrenia and that 13% of cases of

schizophrenia would be averted if cannabis use were prevented.

The historical studies have been complemented by a number of recent

prospective cohort studies. In a general population birth cohort study of

1037 people born in Dunedin, New Zealand, and followed through until age

26 years, cannabis use conferred a higher risk for the subsequent development of

schizophrenia (Arseneault et al., 2002). One of the strengths of this study was that

it collected data on self-reported psychotic symptoms at age 11 years, that is, to

address whether psychosis preceded cannabis use. Self-reported cannabis at both

ages 15 and 18 years use was also collected. Further, the entire sample was

assessed at age 26 years using a standardized psychiatric interview that allowed

the determination of both schizophrenia symptoms and disorder. Compared to

nonusers, individuals using cannabis at ages 15 and 18 years had higher rates of

psychotic symptoms and schizophreniform disorder at age 26 years, even after

controlling for psychotic symptoms pre-dating the onset of cannabis use. Canna-

bis users at age 15 years had a higher rate (OR¼ 3.1) of developing schizophreni-

form disorder at age 26 years, even after controlling for psychotic symptoms

pre-dating the onset of cannabis use (Fig. 2).

In The Netherlands Mental Health Survey and Incidence Study (NEMESIS),

4045 psychosis-free individuals and 59 individuals with a psychotic disorder were

assessed at baseline, 1 and 3 years (van Os et al., 2002) using a measure of

psychosis. Individuals using cannabis at baseline were nearly three times more

likely to manifest psychotic symptoms at follow-up even after adjustment for a

range of factors. Further, a dose–response relationship was established with the

highest risk (odds ratio ¼ 6.8) for the highest level of cannabis use. The relation-

ship between cannabis use and psychotic symptoms was stronger for cases with
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more severe psychotic symptoms. Individuals who reported psychotic symptoms

at baseline were also more likely to develop schizophrenia if they used cannabis

than were individuals who did not. The attributable risk of cannabis to psychosis

was estimated at 13% for psychotic symptoms and 50% for cases with psychotic

disorders that required psychiatric treatment.

Henquet et al. (2005) studied the relation between cannabis use and psychotic

symptoms in individuals at risk for psychosis who first used cannabis during

adolescence.

They tracked 2437 subjects (14–24 years) with and without risk for psychosis

from the general population for 4 years and found a dose-dependent increased risk of

psychosis in subjects exposed to cannabis (Henquet et al., 2005). Interestingly,

predisposition to psychosis was not found to be a predictor of future cannabis use

at 4-year follow up. Adding to these studies, Stefanis et. al. (2004) reported that both

positive and negative symptoms can be induced by cannabis consumption and are

independent of each other. Finally, a number of cohort studies have reported a dose–

response relationship in the increased risk of psychosis with cannabis exposure

(Ferdinand et al., 2005; Fergusson et al., 2003; Henquet et al., 2005; Stefanis et al.,

2004; van Os et al., 2002; Weiser et al., 2002).

Collectively, these epidemiological studies suggest that cannabis use may

confer a nearly twofold higher risk for developing schizophrenia. This increased

risk is comparable to the better known associations, such as the risk conferred by

cigarette smoking in the development of lung cancer and the risk of heart disease

from hypercholesterolemia.
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FIG. 2. Interaction between cannabis use at age 18 and psychotic symptoms at age 11 in predicting

schizophrenia symptoms.
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Temporal relationship between cannabis use and the onset of schizophrenia: The onset of

cannabis use may precede, follow, or co-occur with the onset of schizophrenia.

However, schizophrenia begins insidiously, and evolves through several identi-

fiable stages with the emergence of psychotic symptoms as the final step in

the evolution of the disorder. As a result, while it maybe easy to pinpoint the

emergence of positive psychotic symptoms in retrospective studies, pinpointing

the onset of the less obvious prodromal symptoms is extremely challenging. Thus,

while there is evidence suggesting a temporal association between cannabis use

and the onset of positive psychotic symptoms, the temporal relationship between

cannabis use and the less obvious symptoms has not been studied. Further, if as the

neurodevelopmental hypothesis posits, that the pathophysiological processes

underlying the illness precede the clinical manifestations by years or even decades

and that these processes may even begin in utero, then, the argument about a

temporal relationship is no longer relevant.

Nevertheless, there are a few studies that have systematically investigated the

temporal order of cannabis use and the onset of schizophrenia. Allebeck and

colleagues reported that in 69% of a schizophrenic patient sample from a

Swedish case registry (n ¼ 112), cannabis abuse preceded the onset of psychotic

symptoms by at least 1 year (Allebeck et al., 1993b). Further, in only 11% did the

onset of psychotic symptoms precede the onset of cannabis abuse. Similarly,

Linszen et al. (1994) found that cannabis abuse preceded the onset of psychotic

symptoms by at least 1 year in 23 of 24 cannabis-abusing recent onset schizo-

phrenic patients. Hambrecht and Hafner (1996, 2000) in their study of first-

episode schizophrenic patients found that 14.2% of the sample had a lifetime

history of drug abuse with cannabis being the most frequently abused drug (88%).

Furthermore, drug abuse preceded the first sign of schizophrenia by more than a

year but typically by more than 5 years in 27.5% of patients. In 37.9% of

individuals, drug abuse followed the first sign of schizophrenia, and in 34.6%

of individuals the first sign of schizophrenia and drug abuse started within the

same month.

EVects of cannabis in individuals at high risk for developing schizophrenia: Another way
to assess the risk of psychosis conferred by cannabis exposure is by studying the

eVects of cannabis in individuals at high risk for developing schizophrenia. In the

Edinburgh High Risk study, individuals with a high genetic risk of schizophrenia,

as evidenced by two or more aVected relatives, cannabis use increased the risk for

psychosis (Miller et al., 2001). Furthermore, frequent cannabis use conferred a

sixfold higher risk of schizophrenia in individuals with a family history of schizo-

phrenia. In contrast, cannabis use or dependence in the previous year was not

associated with a heightened risk of developing psychosis over the following

12-month period in a group of individuals at ultrahigh risk for developing

schizophrenia (Phillips et al., 2002). While the authors concluded that cannabis

use did not appear to contribute to the onset of psychosis, they acknowledged
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several limitations to the study design, including a low level of cannabis use in the

sample and the lack of monitoring of cannabis use.

Cannabis is associated with an earlier onset of psychotic symptoms in schizophrenia: Some

studies suggest that cannabis and other substance use is associated with an earlier

age of and more abrupt onset of psychotic symptoms in schizophrenic patients

(Addington and Addington, 1998; Allebeck et al., 1993a; Andreasson et al., 1987,

1989; Cleghorn et al., 1991; Green et al., 2004; Hambrecht and Hafner, 1996;

Linszen et al., 1994; McGuire et al., 1994; Van Mastrigt et al., 2004; Veen et al.,

2004).

Parallels in the association between amphetamines and psychosis and cannabis and

psychosis: At this juncture, it would be illustrative to review an older but relevant

story about the association between cannabis and psychosis. As early as 1938,

Young and Scoville first reported an association between amphetamine use and

psychosis. Nearly 20 years later, in a seminal report of 42 cases, Connell (1958)

reported that high-dose amphetamine use by amphetamine addicts was asso-

ciated with a florid psychosis. Despite some supporting data (dose–response,

temporal association, and phenomenological similarities), there was considerable

skepticism about the suggested association between amphetamines and psychosis

as reviewed in (D’Souza et al., 1999). First, it was not possible to determine

whether amphetamine precipitated latent psychosis or de novo psychosis. Second,

at the time ‘‘thought disorder,’’ which was not a prominent feature described in

early reports of amphetamine psychosis, was believed to be fundamental to and

diagnostic of schizophrenia in American Psychiatry. Third, the prevailing diag-

nostic criteria of schizophrenia were poorly defined. Fourth, the role of sleep

deprivation induced by amphetamines, in the development of amphetamine

psychosis could not be excluded. Finally, it was unclear whether other drugs

(sedative hypnotics, marijuana, and hallucinogens) taken along with ampheta-

mines may have contributed to the development of psychosis in amphetamine

abusers reviewed in (D’Souza et al., 1999).

Prospective, controlled pharmacological studies with amphetamine provided

critical support for the early DA hypothesis by addressing the limitations of

naturalistic studies. In a series of studies, amphetamine loading was shown to

induce psychosis in nonschizophrenic volunteers that spontaneously resolved

(Angrist and Gershon, 1970; Angrist et al., 1971; Bell, 1965, 1973; GriYth

et al., 1972). Drawing a parallel, pharmacological studies with cannabinoids

address some of the limitations of naturalistic data similar to pharmacological

studies with amphetamines. In particular, pharmacological studies oVer the

advantages of providing more accurate dose–response data, a sample carefully

screened for preexisting illness, a more precise estimation of temporality and

control of various confounds. While there are several reports of pharmacological

studies with cannabinoids in humans, most of the studies were not specifically

designed to study psychosis.
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IV. Pharmacological Studies

In order to better interpret the pharmacological studies, it would be essential

to understand some of the pharmacokinetic issues relevant to cannabis and

�-9-THC. The pharmacokinetics and eVects of �-9-THC vary as a function

of route of administration. Herbal cannabis and cannabinoid compounds are

typically consumed during recreational use by the inhaled or oral route. However,

cannabinoids have also been administered for therapeutic or experimental purposes

by the intravenous, rectal, sublingual, transdermal, topical (eye drops), and aero-

solized route.�-9-THC administered by inhalation results in peak plasma concen-

trations within minutes, with psychotropic eVects starting within seconds to a few

minutes, reaching a peak after 15–30min, and then tapering oVwithin 2–3 h (Fig. 3).
In attempting to quantify the dose of �-9-THC extracted from a typical cannabis

joint several factors need to be considered including, but not limited to, the weight of

a cannabis joint, the potency of�-9-THC in the herbal cannabis preparation, and

the presence of other cannabinoids in herbal cannabis that might contribute to the

eVects of cannabis and/or alter the eVects of�-9-THC (Karniol and Carlini, 1973;

Karniol et al., 1974, 1975; Turner et al., 1980). Further, the amount of THC

delivered is influenced by several factors, including the rate of inhalation, depth of

puVs, duration of puVs, volume inhaled, extent of breath-holding after inhalation,
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FIG. 3. Time course of subjective eVects according to route of administration.
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amount lost by smoke escaping into the air or respiratory dead space, vital capacity,

length of cigarette smoked, adeptness of smoking, and subject’s overall experience in

titrating the dose. In fact, only 10–25% of the�-9-THC content of a cannabis joint

enters the circulation when smoked (Adams and Martin, 1996). Thus, quantifying

the typical dose of �-9-THC that a typical cannabis joint delivers is not without

challenges. Intravenous dosing follows the pharmacokinetics of the inhaled route,

though blood levels tend to be higher. Following oral ingestion, psychotropic eVects
set in with a delay of 30–90 min, reach their maximum after 2–3 h, and last

for about 4–12 h (Hollister et al., 1981; Ohlsson et al., 1980, 1981). Nabilone is

administered by oral route while levonantradol is administered by intramuscular

route.

Psychosis associated with the consumption of medicinal cannabinoids: Cannabinoids

including cannabis, natural and synthetic�-9-THC, nabilone, and levonantradol

have been used in the treatment of chemotherapy-induced nausea, spasticity in

multiple sclerosis, pain syndromes, glaucoma, stimulation of appetite, Tourette’s

syndrome, parkinsonism, dyskinesia, and traumatic brain injury. Adverse events

causally linked to Marinol that occurred at >1% in the clinical trials included

hallucinations, abnormal thinking, paranoid reaction, amnesia, and so on, all of

which are symptoms of psychosis (Marinol Product monograph). Further, the

incidence of ‘‘disturbing’’ psychiatric reactions increased with dose escalation.

Similarly, studies with oral and intramuscular levonantradol have reported ‘‘loss

of control,’’ hallucinations, other perceptual alterations, thought disturbance,

feelings of unreality, fear and paranoia, apprehension, diYculty concentrating,

dissociation, depersonalization, dysphoria, anxiety, and panic (Citron et al., 1985;

Cronin et al., 1981; Diasio et al., 1981; Heim et al., 1981, 1984; Jain et al., 1981;

Kenny andWilkinson, 1982; Laszlo et al., 1981; Sheidler et al., 1984; Stuart-Harris

et al., 1983). Psychotropic adverse eVects increased both with increasing dose and

with repeated dosing (Citron et al., 1985; Stambaugh et al., 1984). Further, some

subjects refused further testing because of the disturbing psychotropic eVects.
Nabilone (CESAMETTM) was developed by Eli Lilly and marketed in Europe

as an analgesic agent. A ‘‘toxic psychosis’’ has been reported as one of its side

eVects.
In a systematic review of randomized controlled trials comparing the antie-

metic eVects of cannabinoids with placebo or other antiemetics, 6% of patients

receiving cannabinoids presented with hallucinations and 5% with ‘‘paranoia,’’

while no patient treated with control drugs presented with such side eVects
(Tramer et al., 2001). The same group conducted a systematic review of rando-

mized controlled trials comparing the analgesic eVects cannabinoids with place-

bo or other analgesics (codeine and benzopyranoperidine), but they did not

specifically mention psychotic symptoms (Campbell et al., 2001).

Experimental studies: There are a small number of pharmacological studies that

were specifically designed to examine the behavioral and/or cognitive eVects of
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cannabinoids. As far back as the 1940s, pharmacological investigations were con-

ducted under the direction of the ‘‘LaGuardiaCommittee onMarihuana’’ (Mayor’s,

1944). With cannabis doses of about 30–50 mg (oral) and 8–30mg (smoked), 12.5%

of subjects experienced psychotic reactions. However, these subjects were prisoners

and their mental status cannot be presumed to be healthy. Ames (1958) studied the

eVects of unassayed oral doses of cannabis extract (about 50–70 g �-9-THC) in

12 medical house staV who were presumably healthy. Subjects reported immediate

recall deficits, thought fragmentation, dissociation between thoughts and action,

disturbed temporal and spatial perception, visual illusions and hallucinations, dere-

alization and depersonalization, mood alterations, and anxiety. Some subjects

reported delusions of the presence of hidden recorders, fear of being hypnotized,

fear of ECT, and fear of developing schizophrenia. One subject refused to answer

questions for fear of being certified as insane. Isbell and colleagues (1967) studied the

eVects of varying doses of �-9-THC (120–480 �g/kg orally and 50–250 �g/kg
smoked) in 40 former opiate addicts. At�-9-THC 120 �g/kg orally and 50 �g/kg
smoking, in addition to recognizing the eVects as being similar to marijuana, the

subjects reported alterations in visual, auditory, and time perception. However, at

�-9-THC doses of 300–480 �g/kg orally and 200–250 �g/kg by smoking there

were marked auditory and visual distortions, depersonalization, derealization, and

hallucinations. Of note, ‘‘occasional’’ individuals experienced psychosis even at

low doses of�-9-THC. In a related study, Isbell and Jasinski (1969) compared the

eVects of �-9-THC (75–225 �g/kg, smoked) and LSD (0.5–1.5) in 10 ‘‘normal’’

controls. Both drugs produced perceptual distortions, mood changes, and at

higher doses hallucinations. Of note, two subjects dropped out from the study

after experiencing psychotic ‘‘reactions’’ from �-9-THC. However, Hollister

showed that �-9-THC was not associated with as prominent psychotomimetic

eVects as LSD (reviewed in Hollister, 1986).

Melges et al. (1970) in a double-blind, placebo-controlled study with high and

low dose �-9-THC reported that cannabis users were noted to have core symp-

toms of psychosis, including thought disorder and paranoia. The authors specifi-

cally described ‘‘tracking diYculties’’ that subjects reported, including racing

thoughts, thought blocking, losing their train of thought, and so on. Jones and

Stone (1970) did not observe robust psychotomimetic eVects in studies of ‘‘nor-

mal’’ controls with �-9-THC (20 mg smoked or 40 mg orally). However, a few

subjects reported ideas of reference and delusions that the researcher was using

secret (unexplained) tests and hidden recording devices. At doses higher than 20

mg smoked or 40 mg orally, psychotomimetic eVects including delusions, loosen-
ing of associations, and marked illusions began to emerge. In a 18F-2-fluoro-2-

deoxyglucose positron emission tomography (FDG-PET) study of intravenous

�-9-THC (2 mg) on regional brain metabolism, two of eight healthy subjects

who occasionally used cannabis, experienced paranoid-anxious reactions (Volkow

et al., 1991).
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The pharmacological studies discussed thus far had several limitations,

including the absence of placebo/control, lack of a double-blind, inclusion

of psychiatrically ill individuals, and lack of standardized measures of psychosis.

Recently, there have been a few laboratory studies examining the psychotogenic

eVects of cannabinoids that address some of these limitations.

Leweke et al. (1999b) reported the eVects of synthetic �-9-THC (120 �g/kg)
by oral route in 17 healthy individuals under controlled laboratory conditions.

The study included subjects with past experience but no recent consumption of

cannabinoids. The overall lifetime consumption of cannabinoids was limited to

10 times to exclude the long-term eVects of cannabis use. Subjects with a history

of recurrent abuse of illicit drugs other than cannabinoids or other psychiatric

disorders were excluded. The primary outcome measure was binocular depth

perception which has described as a model of illusionary perception. While the

study was not placebo controlled, subjects were told that they might receive a

placebo or active drug, but in fact they always received active drug. Subjective

reactions ranged from mild euphoria to more pronounced reactions, including

feelings of loss of self-control and body distortion suggestive of psychotic-like

symptoms. One subject experienced a transient psychotic episode described as ‘‘a

paranoid psychotic state with persecutory delusions, delusions of thought insertion,

attentional irritability, fear, and—to some extent—verbal aggressive behavior.’’

These symptoms resolved spontaneously within minutes to hours. Leweke et al.

(2000) repeated the study with nabilone, a synthetic analogue of �-9-THC, and

observed eVects on binocular depth inversion similar that of �-9-THC (Leweke

et al., 2000).

D’Souza et al. (2004) characterized the behavioral and cognitive eVects of

�-9-THC in a double-blind, placebo-controlled study of healthy controls (n ¼ 22).

Only subjects with past cannabis experience but without lifetime cannabis abuse

or dependence were included. Healthy subjects also underwent a Structured

Clinical Interview for DSM-IV (healthy) and an unstructured psychiatric evalua-

tion. Subjects were excluded if they had any significant psychiatric disorder and/

or a family history of any DSM Axis I disorder. Subjects received in random

order 5 or 2.5 mg of �-9-THC, or vehicle by intravenous route over 2 min.

Positive and negative symptoms of psychosis were measured using the Positive

and Negative Syndrome Scale (PANSS). Perceptual alterations that did not quite

meet the threshold of psychosis were measured using the Clinician Administered

Dissociative Symptoms Scale (CADSS). Cognitive symptoms were measured

using tests of immediate recall (learning) and delayed recall, verbal fluency,

working memory, and vigilance and distractibility. �-9-THC produced transient

positive symptoms (Fig. 4), perceptual alterations, negative symptoms, euphoria,

anxiety, and deficits in working memory and verbal recall, and the executive

control of attention without altering general orientation.
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Positive symptoms and perceptual alterations: The positive symptoms induced by

�-9-THC included suspiciousness, paranoid and grandiose delusions, conceptual

disorganization, and illusions. For example, healthy controls reported suspicious-

ness such as ‘‘I thought you all were trying to trick me by changing the rules of the

tests to make me fail. I thought you were turning the clock back to confuse me,’’

or ‘‘I thought that this was real . . .. I was convinced this wasn’t an experiment,’’ or

‘‘I thought you all were giving me THC thru the BP (blood pressure) machine

and the sheets.’’ Healthy controls also reported conceptual disorganization such

as ‘‘I couldn’t keep track of my thoughts . . . they’d suddenly disappear,’’ or

‘‘It seemed as if all the questions were coming to me at once . . . everything was

happening in staccato,’’ or ‘‘my thoughts were fragmented. . . the past present and
future all seemed to happening at once.’’ Healthy subjects also reported unusual

thoughts such as ‘‘I thought you could read my mind, that’s why I didn’t answer

. . .. I felt as if my mind was nude,’’ or ‘‘I felt I could see into the future . . ..
I thought I was God.’’ These eVects reported by carefully screened healthy subjects

appear to be remarkably similar to the kinds of psychotic symptoms reported by

patients with schizophrenia.

An identical study was conducted in parallel in medicated schizophrenic

patients. �-9-THC transiently exacerbated a range of positive and negative symp-

toms, perceptual alterations, cognitive deficits, and medication side eVects asso-
ciated with schizophrenia without producing any obvious ‘‘beneficial’’ eVects.
The increases in psychosis were brief, modest, and occurred even though subjects

were clinically stable, medication-responsive, and were receiving therapeutic
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doses of antipsychotics. The positive symptoms induced in these patients were

similar to their typical symptoms. Using a threshold score of clinically significant

positive symptoms (PANSS positive symptom subscale score �3 points) defined

a priori, schizophrenia patients appeared to be more sensitive to the �-9-THC

eVects. Eighty percent of the schizophrenia group but only 35% of controls had a

suprathreshold response to 2.5 mg �-9-THC and 75% of schizophrenic patients

but only 50% of controls had a suprathreshold response to 5 mg �-9-THC

(Fig. 5). Similarly, (Lindeman and Malamud 1934) administered unassayed doses

of hashish to a group of schizophrenic patients, ‘‘neurotics,’’ and normals.

Normal individuals developed paranoid delusions, impulsivity, and marked per-

ceptual changes and schizophrenic patients experienced an exacerbation of

symptoms (Lindemann and Malamud, 1934).

Perceptual alterations:�-9-THC also produced depersonalization, derealization,

distorted sensory perceptions, altered body perception, feelings of unreality, and

extreme slowing of time in both healthy individuals and patients with schizo-

phrenia (Fig. 6). Subjects were reported as being ‘‘spaced out,’’ looking ‘‘sepa-

rated or detached,’’ and as if they said or did ‘‘something bizarre,’’ or if they

needed redirection.

Negative symptoms: �-9-THC produced negative symptoms in healthy indivi-

duals which included blunted aVect, reduced rapport, lack of spontaneity,
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FIG. 5. Enhanced sensitivity to the psychotomimetic eVects of d-9-THC in schizophrenia.
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psychomotor retardation, and emotional withdrawal (Fig. 4). Howmuch sedation

and/or being inwardly preoccupied contributed to the increased ratings of nega-

tive symptoms was unclear. These schizophrenia-like negative symptoms may

have been confounded by the known cataleptic and sedating eVects of�-9-THC.

Besides, acute pharmacological studies may have limitations in their capacity to

‘‘model’’ negative symptoms. Finally, �-9-THC transiently increased negative

symptoms in schizophrenic patients.

Of note, a persistent ‘‘amotivational syndrome’’ has been described in chronic

heavy cannabis users by some (Halikas et al., 1982; Hall and Solowij, 1998;

Kolansky andMoore, 1971b;Millman and Sbriglio, 1986; Tennant andGroesbeck,

1972b) but not others (Carter et al., 1980; Hollister, 1988; Rubin and Comitas,

1975). This so-called ‘‘amotivational syndrome’’ is characterized by apathy, amo-

tivation, social withdrawal, narrowing of interests, lethargy, impaired memory,

impaired concentration, disturbed judgment, and impaired occupational achieve-

ment. The syndrome has a striking phenomenological similarity with the negative

dimension of psychosis and appears to be dose related. However, other drug use,

poverty, low socio-economic status, or preexisting psychiatric disorders existing

data may confound the interpretation of the existing literature.

Cognitive deficits: The most consistent acute cognitive eVects of cannabinoids in
humans include deficits in learning, short-term memory, working memory, and

attention (Hart et al., 2001; Heishman et al., 1990; Hooker and Jones, 1987;

Leweke et al., 1998; Marks and MacAvoy, 1989; Miller et al., 1977). These are

also the cognitive deficits observed in schizophrenia (Heinrichs and Zakzanis,

1998). Of note, the most robust eVects of cannabinoids are on verbal memory
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reviewed in Ranganathan and D’Souza (2006), the latter is also the most robust

cognitive deficit observed in schizophrenia (Heinrichs and Zakzanis, 1998).

In healthy subjects (hatched lines), �-9-THC significantly impaired immedi-

ate free recall in a dose-dependent manner across all three trials of immediate

recall (Fig. 7).�-9-THC also impaired delayed (þ30 min) free recall and delayed

cued recall in a significant, dose-dependent manner. The eVect on delayed recog-

nition recall trended toward significance. Finally, �-9-THC increased the num-

ber of false positives and intrusions with a trend toward significance. Relative to

controls, schizophrenia patients were specifically more vulnerable to the dose-

related learning impairments produced by �-9-THC (D’Souza et al., 2005).

Under the influence of 5 mg �-9-THC schizophrenia patients (solid lines)

showed no learning whatsoever (Fig. 7). �-9-THC also increased the number

of intrusions and false positives generated during recall. Further, 5 mg �-9-THC

reduced learning and recall in healthy controls to the level of schizophrenia

patients on the placebo condition.

While the acute transient eVects of cannabinoids on memory are quite clear,

whether cannabinoids produce impairments in memory that persist beyond the

period of intoxication, remains inconclusive. Heavy and prolonged cannabis

exposure may be associated with deficits in memory, sustained attention, and

executive functioning (Bolla et al., 2002; Pope and Yurgelun-Todd, 1996; Pope

et al., 1995; Solowij, 1995; Solowij et al., 1995, 2002). Eleven of 22 (50%) studies
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involving clinical samples (cannabis abusers) and 5 of 7 (75%) population-based

samples support an association between cannabis use (excluding intoxication) and

cognitive deficits. With a few exceptions, the literature has limitations including

(1) the lack of any measures of cognitive functioning prior to onset of cannabis

use, (2) small samples (range 9–63; median ¼ 26), (3) selection bias, (4) confound

of other drug and/or alcohol use, and (5) sensitivity of the cognitive measures,

and so on.

In a meta-analysis of 15 studies, Gonzalez et al. (2002) concluded that a

majority of studies found evidence for persistent but subtle cognitive deficits

associated with nonacute (remote) cannabis use. However, whether these cogni-

tive deficits are reversible and persist despite cessation of cannabis use remains an

open question. In the first published report examining whether the residual

cognitive eVects of cannabis persist beyond a period of abstinence longer than

12–72 h, Pope et al. (2001) found that deficits in cognitive test performance in

cannabis abusers that were present at 7 days normalized by day 28 (Pope et al.,

2001). In contrast, Bolla et al. (2002) found that cognitive test performance in

cannabis abusers with a history of very heavy use of cannabis showed persistent

decrements in learning and recall, executive function, psychomotor speed, com-

plex reaction time, and manual dexterity even after 28 days of abstinence. The

magnitude of the diVerence in mean performance between the heavy and light

users was between 1.0 and 3.3 S.D. units (Bolla et al., 2002). Similarly, the

magnitude of the association between cannabis use and decreasing Wisconsin

Card Test Performance (executive functioning) was large (4.1–4.2 S.D. units).

The question of enduring deficits associated with cannabis abuse are only

beginning to be investigated with more sensitive measures such as brain imaging

and electrophysiology. Cannabis abusers have altered regional cerebral blood

flow (rCBF) at rest in several brain regions even after 26 h of monitored

abstinence (Block et al., 2000). Similarly, Block et al., have shown decreases in

memory-related blood flow in prefrontal cortex in frequent cannabis users in the

unintoxicated state relative to nonusers, increases in memory-relevant regions of

cerebellum, and altered lateralization in hippocampus. The speed of information

processing, measured by the latency of parietal P300, was delayed significantly

with increasing frequency of use (Solowij et al., 1995). In summary, there is some

overlap between the cognitive eVects of cannabinoids and the cognitive deficits

observed in schizophrenia.

�-9-THC produces a plethora of eVects including euphoria, a calm and

relaxed feeling state, psychotomimetic symptoms, tachycardia, etc. in the absence

of any change in orientation. While some but not other studies reviewed suggest

that cannabis can induce a broad range of transient eVects in healthy individuals

that share some similarities with some, though not all, of the symptoms of

schizophrenia, the data from these acute studies do not, however, address the
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question of whether cannabis can cause a chronic psychotic disorder such as

schizophrenia, that persists through life.

What puts some individuals at higher risk for experiencing psychotic symptoms following

exposure to cannabinoids? Individuals with a vulnerability to psychosis as estimated

by a psychosis proneness scale were more likely to report psychotic symptoms

with cannabis use (Verdoux et al., 2003b). In a preliminary report, no structural

mutations in CB1R were found in individuals who developed acute psychotic

symptoms after cannabis intake (Hoehe et al., 2000). Caspi et al. (2005) reported

that a polymorphism of the catechol-O-methyl transferase (COMT) gene mod-

ulates the risk of schizophrenia conferred by cannabis (Fig. 8). After adolescent

exposure to cannabis, individuals homozygous for the COMT valine158 allele

were most likely to exhibit psychotic symptoms and to develop schizophreniform

disorder later. The eVects of cannabinoids on dopamine function may be

involved in this gene by cannabis interaction.

V. Cannabis and Psychosis: Causality

Some of the criteria that have been used to establish disease causality include

temporality, strength of the association, direction, dose–response or biological gra-

dient, consistency, specificity, coherence, strength of the relationship, experimental

evidence, and biologic plausibility (Aiello and Larson, 2002; Hill, 1965).

Most studies provide evidence of direction by showing that the association

between cannabis use and psychosis persists even after controlling for many

potential confounding variables such as gender, age, ethnicity, low IQ, level of
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education, urbanicity, disturbed behavior, cigarette smoking, poor social integra-

tion, unemployment, single marital status, and previous psychotic symptoms.

While there is a strong association between cigarette smoking and schizophrenia,

there is little evidence to support the notion that cigarette smoking ‘‘causes’’

schizophrenia. In contrast, the high rates of cigarette smoking in schizophrenia

may reflect an attempt by schizophrenia patients to self-medicate deficits in

information processing. Several studies reviewed here provide evidence of a

dose–response relationship between cannabis exposure and the risk of psychosis.

With regard to temporality, some, though not all, studies suggest that cannabis use

precedes or coincides with the onset of psychosis in about two-third of patients

with schizophrenia who use cannabis. Related to this, cannabis use may be

associated with an earlier age of onset of schizophrenia. Further, there is also

evidence that the earlier the onset of cannabis use, the stronger the eVect on
schizophrenia outcomes. There is also some evidence for both the relative speci-

ficity of exposure (i.e., cannabis) and specificity of the outcome (i.e., psychosis).

Experimental evidence from laboratory studies suggests that cannabinoids can

induce a wide range of transient schizophrenia-like symptoms in healthy indivi-

duals and relative to controls, schizophrenia patients are more vulnerable to the

psychotomimetic eVects of�-9-THC.Whether exposure to cannabis can result in

a chronic psychotic state that persists beyond the period of intoxication is unclear.

However, not all patients with psychosis have been exposed to cannabis and

not all cannabis users develop psychosis. Furthermore, there is a disparity in the

incidence and prevalence of cannabis abuse (7–12%) and that of schizophrenia

(1–2%), and despite diVerent rates of cannabis consumption across the globe,

there is relative uniformity in the incidence of schizophrenia. Further, the increase

in cannabis use and the use of more potent forms of cannabis in certain geo-

graphical areas has not been accompanied or followed by a commensurate

increase in the rates of schizophrenia (Degenhardt et al., 2003). Similarly,

if cannabis use is associated with an earlier age of onset, then the increase rates

of cannabis use should result in a trend toward a lower age of onset of schizophrenia.

This does not seem to be the case.

Taken collectively, it appears that cannabis is neither a necessary nor a

suYcient cause of schizophrenia. Similarly, cigarette smoking is neither a neces-

sary nor a suYcient cause of lung cancer. More likely, cannabis exposure is a

component or contributing cause which interacts with other known, for example,

genetic and heretofore unknown factors, leading to schizophrenia. In terms of

strength, cannabis confers about a two- to threefold increase in the relative risk for

schizophrenia. Arsenault et al. (2004) have suggested that the number of cases

of schizophrenia in a population that could be eliminated by removal of cannabis

use, the population attributable fraction (PAF), is about 8% (Arsenault et al., 2004).

In the absence of known causes of schizophrenia, the role of component causes

such as cannabinoid exposure remains important and warrants further study.
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As reviewed by Piomelli, advances in the understanding of brain cannabinoid

receptor function now oVer several biologically plausible mechanisms by which

cannabis exposure might induce psychosis. While it is out of the scope of this

chapter, the interactions between cannabinoid receptor function and dopamine,

glutamate and GABA receptor function provide potential mechanisms by which

cannabis contribute to the pathophysiology of psychosis reviewed in D’Souza

et al. (2004, 2005).

VI. Cannabinoid Receptor Dysfunction and Psychotic Disorders

Emerging findings from postmortem (Dean et al., 2001; Zavitsanou et al.,

2004), neurochemical (GiuVrida et al., 2004; Leweke et al., 1999a), and genetic

(Ujike et al., 2002) studies suggest that cannabinoid receptor system dysfunction

that may contribute to the pathophysiology of schizophrenia.

Leweke et al. (1999a) and colleagues were the first to suggest altered cannabinoid

receptor function in schizophrenia. Levels of anandamide, 2-AG, palmitoylethano-

lamide (PEA), and a noncannabinoid acylethanolamide, oleylethanolamide (OEA)

as a positive control, were measured in cerebrospinal fluid (CSF) sampled from

10 schizophrenia patients and 11 healthy controls (Fig. 9). Mean anandamide

and PEA levels were approximately twofold higher in the schizophrenia patients.

These diVerences could not be attributable to drug use, and neither age, gender

nor medication correlated with CSF endocannabinoid levels. However, since

some subjects were neuroleptic naı̈ve and others were not, it was not possible to

fully exclude an eVect of antipsychotic drugs.
These data were replicated in a larger sample and the confound of medication

status was also addressed (GiuVrida et al., 2004). CSF anandamide levels were

eightfold higher in antipsychotic-naive first-episode paranoid schizophrenics than

in healthy and psychiatric controls (Fig. 10). The elevations in CSF anandamide

seen in antipsychotic naive schizophrenic patients were absent in schizophrenics

treated with ‘‘typical’’ antipsychotics but not in those treated with ‘‘atypical’’

antipsychotics (n ¼ 34). Finally, CSF anandamide levels negatively correlated

with psychotic symptoms in unmedicated patients. Since anandamide release

may serve as an inhibitory feedback signal countering dopamine activation, the

increase in CSF anandamide levels in unmedicated acutely psychotic patients

was interpreted as a compensatory increase in endocannabinoids secondary to

psychosis-related hyperdopaminergia. While CSF studies of endocannabinoids

have served to draw attention to possible endocannabinoid dysfunction in schizo-

phrenia, they are not without limitations. Endocannabinoids are very challenging to

assay. Anandamide has a very short half-life and therefore diVerences in collec-

tion and processing of samples might explain the group diVerences. Finally, CSF
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endocannabinoid levels may reflect global rather than regional changes. Studies

directly examining CB1 receptor may address some of these limitations.

There are two postmortem studies of CB1 receptor changes in schizophrenia

in the literature. Compared with control subjects, schizophrenia patients showed a

19% increase (p< 0.05) in CB1 receptor density only in the dorsolateral prefrontal

cortex (DLPFC) (Dean et al., 2001). These diVerences could not be attributable to

postmortem interval, brain pH, age, or gender. Further, there were no significant

correlations between CB-1R binding and duration of illness or antipsychotic

drug dose in those with schizophrenia. Of note, chronic antipsychotic drug

treatment study in rats does not result in changes in CB1-receptor binding in the

cerebral cortex, caudate-putamen (CP), or hippocampus (Sundram et al., 2004).

There were no significant diVerences between the groups in the CP or hippo-

campal formation. In subjects who had recently consumed cannabis, there was a

significant (p < 0.05) 23% increase in CB1 receptor density in the CP compared

to nonusers independent of schizophrenia. Zavitsanou et al. (2004) compared

CB1 receptor in the anterior cingulated cortex (ACC) taken postmortem from

patients with schizophrenia (n ¼ 10) and matched control subjects (n ¼ 9) using

[3H]SR141716A. Compared to the control group schizophrenia patients had a

significant 64% increase in CB1 receptor density in the ACC. The eVects of
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antipsychotic treatment or premorbid cannabis use explaining the group diVer-
ences could not be ruled out. Together the postmortem studies provide some

preliminary evidence suggestive of endocannabinoids dysfunction in schizophre-

nia. The development of good radioligands that permit in vivo imaging of the CB1

receptor in schizophrenia patients would help confirm the limited postmortem

findings.

Finally, several groups have looked for associations between schizophrenia

and genes relevant to cannabinoid receptor function. The CB1 receptor gene is

mapped to chromosome 6q14–15, and linkage studies have produced evidence

for a schizophrenia-susceptibility locus in this region. Two polymorphisms for the
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CB1 receptor gene have been identified, a triplet repeat (AAT)n in the 30-flanking
region (Dawson et al., 1995) and a biallelic silent mutation of 1359 G-to-A at the

453 codon in the coding exon (Gadzicki et al., 1999). Dawson failed to show a

significant association between the (AAT)n triplet repeat polymorphism of the

CB1 receptor gene and schizophrenia in 135 schizophrenic subjects compared

to 101 control subjects (Dawson, 1995). Similarly, Tsai replicated these findings

in a study comparing 127 subjects with schizophrenia and 146 control subjects in

a Han Chinese population (Tsai et al., 2000). They concluded the (AAT)n triplet

repeat in the promoter region of the CB1 receptor gene is not directly involved in

the pathogenesis of schizophrenia in Chinese populations. In contrast, Ujike et al.

(2002) reported that the (AAT)n triplet repeat polymorphism of the CB1 receptor

gene was significantly associated with patients with schizophrenia, especially the

hebephrenic subtype. The functional eVect of this triplet repeat on the CB1

receptor gene transcription rate remains unclear. Leroy studied the 1359 A/G

polymorphism in a French Caucasian sample of 102 subjects with schizophrenia

and 63 healthy controls (Leroy et al., 2001). Overall there were no significant

diVerences between the two groups either in allele frequency or genotype distri-

bution. However, when the patient group was divided into a substance using

(n ¼ 42) and nonusing, they found a significant decrease in homozygosity for the

G allele in nonusers compared to users (p < 0.04). Fatty acid amide hydrolase

(FAAH) is the primary catabolic enzyme of endocannabinoids. Morita et al.

(2005) found no significant association of a nonsynonymous polymorphism

(Pro129Thr) of the FAAH gene with schizophrenia.

VII. Summary and Conclusions

Cannabinoids can induce acute transient psychotic symptoms or an acute

psychosis in some individuals. What makes some individuals vulnerable to

cannabinoid-related psychosis is unclear. Cannabinoids can also exacerbate

psychosis in individuals with an established psychotic disorder, and these exacer-

bations may last beyond the period of intoxication. Less clear is whether cannabis

causes a persistent de novo psychosis. The available evidence meets many but not all

the criteria for causality, including dose–response, temporality, direction, speci-

ficity, and biological plausibility. On the other hand, the large majority of in-

dividuals exposed to cannabinoids do not experience psychosis or develop

schizophrenia. It is more likely that cannabis exposure is a component cause that

interacts with other factors, for example, genetic risk, to ‘‘cause’’ schizophrenia.

Nevertheless, in the absence of known causes of schizophrenia, the role of

component causes such as cannabis exposure (exogenous hypothesis), is important

and warrants further study. There is also tantalizing evidence from postmortem,
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neurochemical, and genetic studies, suggesting CB1 receptor dysfunction (endo-

genous hypothesis) in schizophrenia that warrants further investigation. Further

work is necessary to identify those factors that place individuals at higher risk

cannabinoid-related psychosis, to identify the biological mechanisms underlying

the risks and to further study whether CB1 receptor dysfunction contributes to

the pathophysiology of psychotic disorders. Finally, from a treatment perspective,

given the negative impact of cannabis use on the course and expression of

schizophrenia, and the potential for precipitating psychosis in individuals at

risk for schizophrenia, eVorts need to be directed toward developing eVective
treatments for cannabis use disorders.
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Neuropeptides are heterogeneously distributed throughout the digestive,

circulatory, and nervous systems and serve as neurotransmitters, neuromodu-

lators, and hormones. Neuropeptides are phylogenetically conserved and have

been demonstrated to regulate numerous behaviors. They have been hypothe-

sized to be pathologically involved in several psychiatric disorders, including

schizophrenia. On the basis of preclinical data, numerous studies have sought

to examine the role of neuropeptide systems in schizophrenia. This chapter

reviews the clinical data, linking alterations in neuropeptide systems to the

etiology, pathophysiology, and treatment of schizophrenia. Data for the following

neuropeptide systems are included: arginine-vasopressin, cholecystokinin (CCK),

corticotropin-releasing factor (CRF), interleukins, neuregulin 1 (NRG1), neuro-

tensin (NT), neuropeptide Y (NPY), opioids, secretin, somatostatin, tachykinins,

thyrotropin-releasing hormone (TRH), and vasoactive intestinal peptide (VIP).

Data from cerebrospinal fluid (CSF), postmortem and genetic studies, as well
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as clinical trials are described. Despite the inherent diYculties associated with

human studies (including small sample size, variable duration of illness, medi-

cation status, the presence of comorbid psychiatric disorders, and diagnostic

heterogeneity), several findings are noteworthy. Postmortem studies support

disease-related alterations in several neuropeptide systems in the frontal and

temporal cortices. The strongest genetic evidence supporting a role for neuro-

peptides in schizophrenia are those studies linking polymorphisms in NRG1 and

the CCKA receptor with schizophrenia. Finally, the only compounds that act

directly on neuropeptide systems that have demonstrated therapeutic eYcacy in

schizophrenia are neurokinin receptor antagonists. Clearly, additional investiga-

tion into the role of neuropeptide systems in the etiology, pathophysiology, and

treatment of schizophrenia is warranted.

I. Introduction

Elucidation of the etiology and pathophysiology of schizophrenia with the goal

of developing novel prevention and treatment approaches has included exam-

ination of the role of neuropeptide systems. Neuropeptides, often referred to as

gut–brain peptides because of their high concentrations in both tissues, regulate

numerous behaviors (Bennett et al., 1997; Ramirez et al., 2004) and have been

implicated in the pathophysiology of several major psychiatric diseases (Holsboer,

2003; Inui, 2003; Kinkead and NemeroV, 2004; NemeroV and Vale, 2005).

Although neuropeptides clearly function as neurotransmitters (directly modifying

the electrical state of neurons), they also function as neuromodulators (modifying

the eVects of other, primary neurotransmitters such as dopamine, glutamate,

serotonin, and GABA) and as neurohormones. Elimination of a neuropeptide or

neuropeptide receptor has a wide impact on normal animal behavior, ranging

from no eVect in the absence of an additional pharmacological or environmental

challenge (Coste et al., 2000; Ragnauth et al., 2005; Sharpe et al., 2005; Weninger

et al., 1999a,b) to a frankly abnormal phenotype (Bielsky et al., 2005; Colwell

et al., 2003; Dauge et al., 2001; Nishimori et al., 1996; Yamada et al., 2001). Despite

the relatively subtle behavioral eVects of neuropeptides, considerable preclinical

data have implicated neuropeptide systems in schizophrenia, not the least of which

is their widespread CNS distribution in brain regions implicated in this disorder

and the well-documented eVects of antipsychotic drugs on these circuits.

Overall, the clinical data implicating a preeminent role for one or another

neuropeptide in schizophrenia is not strong, although the overall database is far

smaller than the multitude of studies on dopamine and other monoamines.

Factors contributing to this include the heterogeneity of schizophrenic patients,

including sex, age, substance abuse, comorbid disorders, and chronic exposure to
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antipsychotic drugs. However, several clinical studies have consistently associated

dysregulation of neuropeptide systems with specific patient subgroups character-

ized by common symptomatology or treatment response (Breslin et al., 1994;

Garver et al., 1991; Tachikawa et al., 2000; Zhang et al., 2000).

Moreover, inadequate methods for antemortemmeasurement of indices of the

activity of neuropeptidergic systems in the human brain in patients contribute to

our paucity of information on neuropeptides in schizophrenia. For example, the

virtual absence of ligands to measure peptide receptor density with positron

emission tomography (PET) or single photon emission computed tomography

(SPECT) has limited antemortem studies to measurements of neuropeptides in

the cerebrospinal fluid (CSF). However, although neuropeptides measured in the

CSF are believed to originate largely but not completely from the CNS, the specific

brain regions of origin and their relative contribution remain obscure. Although

postmortem studies allow for a high degree of neuroanatomical resolution, results

are subject to a number of potential confounds, including postmortem delay

interval and chronic antipsychotic (and other) drug exposure, as well as eVects of
agonal state. An additional consideration in CSF and postmortem studies is the

diYculty of obtaining samples from antipsychotic drug-free subjects.

In this chapter, the results of clinical studies examining the role of neuropep-

tide systems in schizophrenia are reviewed. The peptides discussed include

arginine-vasopressin (AVP), cholecystokinin (CCK), corticotropin-releasing factor

(CRF), interleukins, neurotensin (NT), neuropeptide Y (NPY), opioids, secretin,

somatostatin, tachykinins, thyrotropin-releasing hormone (TRH) and vasoactive

intestinal peptide (VIP). Table I summarizes the neuropeptides discussed in this

chapter, identified receptor subtypes, and the available receptor agonists and

antagonists. Data from CSF, postmortem and genetic studies, as well as clinical

trials will be described.

II. Cholecystokinin

CCK was first isolated from the gastrointestinal tract in 1928 (Ivy and

Oldberg, 1928) and was shown to stimulate pancreatic secretion and gall bladder

contraction. CCK is heterogeneously distributed in the gastrointestinal, central,

and peripheral nervous systems (for review see Miyasaka and Funakoshi, 2003).

Several biologically active forms of CCK have been identified and share a

common N-terminal sequence (CCK-4, CCK-8, CCK-22, CCK-33, CCK-39,

and CCK-58), with CCK-8 and CCK-58 being the most abundant forms in the

brain. The peptide gastrin (encoded on human chromosome 17) and CCK

(encoded on human chromosome 3) have identical 6 N-terminal amino acids

but exhibit diVerent sulphation sites (Lund et al., 1986). In the CNS, CCK is
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TABLE I

GENERAL PROPERTIES OF NEUROPEPTIDES IMPLICATED IN SCHIZOPHRENIA

Peptide

Related peptides

(number of aa) Identified receptors Agonists Antagonists

CCK Prepro-CCK

(4, 8, 22, 33, 39, 58)

CCKA Cerulein (CCKA,CCKB) Proglumide (CCKA)

CCKB Gastrin (CCKB) Dexloxiglumide (CCKA)

Devazepide (CCKA)

L365,260 (CCKB)

CRF CRF (41) CRF1 Urocortins (CRF2) GSK 876008 (CRF1)

Urocortin I, II, III (40, 38, 38) CRF2,(sCRF2�,
sCRF2�, sCRF2�)

R121919 (CRF1)

Urotensin I, II, III (41, 11, 29)

Sauvagine (40)

Dynorphins Prodynorphin

Dynorphin A (8, 17)

Dynorphin B (13)

� Receptor Ethylketocyclazocine (�) Norbinaltorphimine (�)

U50,488H (�)

U69,593 (�)

Endorphins POMC

-�-endorphin (30)

-ACTH (39)

-�-MSH (13)

-�, -�, -� endorphins

m Receptor Morphine (m) Naloxone (m, �, �)
Fentanyl (m) Naltrexone (m, �, �)
Levorphanol (m) Cyprodime (m)
Dermorphin (m)

Enkephalins Proenkephalin

-Leu-enkephalin (5)

-Met-enkephalin (5)

� Receptor Deltorphin (�) Naloxone (m, �, �)
Naltrexone (m, �, �)
ICI 174864 (�)

3
3
0



Gastrin Gastrin (6) CCKB JB93242 (CCKB) JB93182 (CCKB)

NT Prepro-NT/Neuromedin N

-Neurotensin (13)

-Neuromedin N (6)

NT1–NT4 NT69L (NT1) SR 48692 (NT1)

Eisai compound (NT1) SR 142948A (NT1, NT2)

JMV 449 (NT1)

PD149163 (NT1)

NPY Pro-NPY

-NPY(36)

NPY1–NPY5 Pancreatic polypeptide H-409/22 (NPY1)

Peptide YY 1229U91 (NPY1)

Somatostatin Prosomatostatin

-Somatostatin (14, 28)

SST1–SST5 Octeotride (SST2) CYN 154806 (SST2)

Seglitide (SST2) PRL-2903 (SST2)

Lanreotide (SST2) BIM-23056 (SST5)

Cortistatin (SST1-SST5)

Tachykinins Preprotachykinin I

-Substance P (11)

-Neurokinin A (10)

-Neurokinin B (10)

Preprotachykinin II

-Neurokinin B (10)

GR73632 (NK1) Vestipitant (NK1)

NK1 Saredutant (NK2)

NK2 Osanetant (NK3)

NK3 Talnetant (NK3)

SSR 146977 (NK3)

TRH Pro-TRH

-TRH (3)

THR-R1 TA-0910 –

THR-R2 DN-1417

VIP Prepro-VIP

-VIP (28)

-PHI (27)

-PHV (27)

-PACAP (27, 38)

VPAC1 Ro 25–1553 (VPAC2) PG 97–269 (VPAC1)

VPAC2 VIP 6–28

3
3
1



TABLE II

STUDIES OF NEUROPEPTIDES IN CEREBROSPINAL FLUID IN PATIENTS WITH SCHIZOPHRENIA

Peptide APD therapy

Compared to

controls Associated features

AVP Drug-free $1, 2 –

CCK Drug-free #3–7 Inversely associated with latency to

APD response 6,7

Maintained #8
CRF Drug-free " Modestly increased compared to

depression8

Drug-free $9–12 Trend to CRF increase 10

Withdrawn $13 Trend for relapsers to have higher

CRF13

Dynorphin Drug-free "14–15 Associated with severity of

symptoms14 and poor outcome15

Endorphin Drug-free #16 –

Drug-free #17–18 –

Drug-free "19–23 Decreased after APD treatment20–23

Drug-free $24–27 –

Enkephalin Drug-free #26, 28 –

Gastrin Drug-free $29, 30 –

Hypocretin Drug free $31 –

IL-2 and -6 Drug free "32, 33 –

Drug-free $34–37 Trend to IL-6 increase34

Maintained $36 –

Withdrawn "38 Associated with relapse38

NT Drug-free #39–43 Associated with severity of positive

and negative of symptoms42–44

Associated with latency to APD

response 43

Normalization after successful APD

treatment40, 42

NPY Drug-free $45, 46 Increased PYY46. Not modifiied by

APD treatment46

Drug-free "47 Associated with duration of illness,

brain abnormalities and severity

of symptoms47

Withdrawn #47 –

Oxytocin Maintained $48 –

Withdrawn $48 –

SOM Drug-free $5, 10 Not modified by APD treatment49

Drug-free #49–51 –

Drug-free NA52, 53, 54 Reduced by APD treatment

SP Drug-free $14, 55, 56 –

TRH Drug-free $2, 10, 57 –

VIP Drug-free $29, 30 –

AVP, arginine-vasopressin; CCK, cholecystokinin; CRF, corticotropin-releasing factor; IL,

interleukin; NPY, neuropeptide Y; NT, neurotensin; SOM, somatostatin; SP, substance P; TRH,

thyrotropin-releasing hormone; VIP, vasoactive intestinal peptide; ", increase; #, decrease; $, no

changes; APD, antipsychotic drug.
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located in the ventral mesencephalon, medial nucleus accumbens (NAcc), septum,

hypothalamus, and solitary complex (Vanderhaeghen et al., 1981). Two CCK

receptors have been identified, CCKA (CCK1) and CCKB (CCK2), both

G-protein–coupled receptors (GPCRs). The CCKA receptor has a higher aYnity

for CCK than gastrin, whereas the CCKB receptor has similar aYnity for CCK

and gastrin.

CCK-8 is the predominant form of CCK in the CNS and CSF, and the CNS is

the main source of CSF CCK (Hökfelt et al., 1994; Rehfeld and Kruse-Larsen,

1978). CSF CCK concentrations in schizophrenic patients (drug-free and treated

with antipsychotic drugs) have been reported to be reduced compared to controls

in some studies (Beinfeld and Garver, 1991; Garver et al., 1990; Lotstra et al., 1985;

Verbanck et al., 1984) or not diVerent in others (Gerner and Yamada, 1982; Gerner

et al., 1985; Rafaelsen and Gjerris, 1985; Tamminga et al., 1986). An association

between CSF concentrations of CCK and the latency to antipsychotic drug

response has been reported (Beinfeld and Garver, 1991; Garver et al., 1990).

See Table II for a summary of the available CSF studies.

The postmortem data suggest disruption of CCK neurotransmission in the

temporal lobe, possibly involving the limbic system in schizophrenia (for summary

see Table III). CCK-immunoreactivity (IR), CCK mRNA expression, and CCK

receptor binding are decreased in the temporal cortex, parahippocampal cortex,

hippocampus, and frontal cortex in schizophrenic patients compared to normal

controls (Bachus et al., 1997; Farmery et al., 1985; Gabriel et al., 1996; Kerwin et al.,

1992; Roberts et al., 1983; Virgo et al., 1995), but discordant results have also been

obtained (Bachus et al., 1997; Roberts et al., 1983). Additionally, increased CCK

mRNA expression in the substantia nigra of antipsychotic drug-treated

schizophrenic patients has been reported (Schalling et al., 1990).

In humans, the gene encoding CCK is located on chromosome 3 (Takahashi

et al., 1986). The CCKA receptor is encoded on chromosome 4, in proximity to

the gene encoding the dopamine (DA) D5 receptor, whereas the CCKB receptor

–, No positive or negative associations; NA, not assessed.
1(Sorensen et al., 1985), 2(Gjerris et al., 1985), 3(Lotstra et al., 1985), 4(Verbanck et al., 1984), 5(Gerner and

Yamada, 1982), 6(Beinfeld and Garver, 1991), 7(Garver et al., 1990), 8(Banki et al., 1987), 9(NemeroV et al.,

1984), 10(Banki et al., 1992b), 11(Risch et al., 1992), 12(Nishino et al., 1998), 13(Forman et al., 1994), 14(Heikkilä

et al., 1990), 15(Lindström, 1996), 16(Zhang et al., 1985), 17(Naber et al., 1981), 18(Pickar et al., 1981),
19(Domschke et al., 1979), 20(Rimon et al., 1980), 21(Lindström et al., 1978), 22(Lindström et al., 1986),
23(Lindström et al., 1992), 24(Emrich et al., 1979), 25(Gerner and Sharp, 1982), 26(Burbach et al., 1979),
27(Nakao et al., 1980), 28(Wen et al., 1983), 29(Gjerris et al., 1984), 30(Rafaelsen andGjerris, 1985), 31(Nishino

et al., 2002), 32(Licinio et al., 1993), 33(Garver et al., 2003), 34(vanKammen et al., 1999), 35(Barak et al., 1995),
36(Katila et al., 1994), 37(el-Mallakh et al., 1993), 38(McAllister et al., 1995), 39(Widerlöv et al., 1982),
40(Lindström et al., 1988), 41(NemeroV et al., 1989), 42(Breslin et al., 1994), 43(Garver et al., 1991), 44(Sharma

et al., 1997), 45(Berrettini et al., 1987), 46(Widerlöv et al., 1988), 47(Peters et al., 1990), 48(Glovinsky et al., 1994),
49(Heikkilä, 1993), 50(Rubinow, 1986), 51(Sharma et al, 1995), 52(Bissette et al., 1986), 53(Gerner et al., 1985),
54(Doran et al., 1989), 55(Rimon et al., 1984), 56(Miller et al., 1996), 57(Sharma et al., 2001).
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TABLE III

SUMMARY OF RESULTS FROM STUDIES EXAMINING NEUROPEPTIDE SYSTEMS IN POSTMORTEM BRAIN TISSUE FROM SUBJECTS WITH SCHIZOPHRENIA [DATA REPRESENT CHANGES

IN IMMUNOREACTIVITY (IR), mRNA EXPRESSION OR BINDING FOR EACH PEPTIDE UNLESS OTHERWISE SPECIFIED]

Peptide Frontal cortex

Temporal

cortex

Entorhinal

cortex

Cingulate

cortex

Nucleus

accumbens

Caudate/

Putamen Amygdala Hippocampus

Substantia

nigra

AVP NA #IR1 NA NA NA NA NA NA NA

CCK # and $
mRNA2,3

#mRNA2 # mRNA2,3 $ mRNA3 # mRNA6–8

# and $ IR5,6 #and $ IR5–8 $ IR9 $ IR8 $ IR5 $ IR5 # and $ IR5,7,8 #and $ IR5–8 " IR11

# binding4 # binding4 $ binding4 $ binding4 # binding4,10

Dyn $ proDyn

mRNA12

NA NA $ proDyn

mRNA12

NA NA $ proDyn

mRNA13

NA $ Dyn-IR14

$� receptor

mRNA12

$� receptor

mRNA12

Enk " IR15 NA NA NA # IR5 $ IR17 NA " IR15

$ proEnk

mRNA16

CRF $ IR6 $ IR6 NA # IR6 NA NA NA NA NA

Gal $ IR18 #and $ IR1,18 NA NA NA NA NA NA NA

NT " IR19 $ IR8 $ IR8 $ IR5,8 $ IR8 $ IR8,17 $ IR8

# binding20 # binding21, 22 # binding20 # binding20,23 " binding24

3
3
4



NPY Altered

distribution25
# IR1,6 NA # IR6 NA NA $ IR17,29 Altered

morphology

in NPY fibers

in CA430

NA

# and $
mRNA26,27

# PYY-IR1

$ NPY1

mRNA28

$ NPY2

mRNA28

SOM # IR6,19 # IR6 NA # IR6 NA $ IR8 $ IR8,29 # IR6–8 NA

SP $ mRNA31 $ mRNA32 NA $ mRNA16 # mRNA32 " IR15

" and $ IR5,15 " IR15 $ IR8 $ IR5,15 $ IR5,15 $ IR8 " IR8,15 $ IR14,15

" NK1-IR
31 $ binding32 $ binding32

TRH # IR19 NA NA NA $ IR19 $ IR19 $ IR19 NA NA

VIP $ IR6,8 $ IR6,8 $ IR9 $ IR6 NA $ IR8 " IR8,17 $ IR6, 8 NA

AVP, arginine-vasopressin; CCK, cholecystokinin; CRF, corticotropin-releasing factor; Dyn, dynorphin; Enk, enkephalin; Gal, galanin; NPY, neuropeptide Y;

NT, neurotensin; PYY, peptide YY; SOM, somatostatin; SP, substance P; TRH, thyrotropin-releasing hormone; VIP, vasoactive intestinal peptide; ", increased;
#, decreased; $, no change; NA, not assessed; IR: immunoreactivity.

1(Frederiksen et al., 1991), 2(Virgo et al., 1995), 3(Bachus et al., 1997), 4(Farmery et al., 1985), 5(Kleinman et al., 1985), 6(Gabriel et al., 1996), 7(Ferrier et al., 1983),
8(Roberts et al., 1983), 9(Perry et al., 1981), 10(Kerwin et al., 1992), 11(Schalling et al., 1990), 12(Peckys and Hurd, 2001), 13(Hurd, 2002), 14(Iadarola et al., 1991), 15(Toru

et al., 1988), 16(Harrington et al., 1995), 17(Zech et al., 1986), 18(Gabriel et al., 1994), 19(NemeroV et al., 1983), 20(Lahti et al., 1998), 21(Hamid et al., 2002), 22(Wolf et al.,

1995), 23(Palacios et al., 1991), 24(Uhl and Kuhar, 1984), 25(Ikeda et al., 2004), 26(Kuromitsu et al., 2001), 27(Caberlotto and Hurd, 1999), 28(Caberlotto and Hurd, 2001),
29(Beal et al., 1987), 30(Iritani et al., 2000), 31(Tooney et al., 2001), 32(Carletti et al., 2005).

3
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is encoded on chromosome 11, in proximity to the gene encoding the DA

D4 receptor (Huppi et al., 1995). On the basis of the similarity in expression

patterns, biological eVects, and their proximity in the human genome, it has been

proposed that receptors for CCK and DA may possibly interact with one

another, perhaps via coregulation (Huppi et al., 1995). Two studies of polymorph-

isms in the CCK gene found no association with schizophrenia (Bowen et al.,

1998; Hattori et al., 2001a). In contrast, a significant association was found

between a polymorphism in the promoter region of the CCK gene and schizo-

phrenia in a family-based analysis (Wang et al., 2002). Polymorphisms in the

CCKA receptor gene and its promoter have also been associated with schizo-

phrenia (Tachikawa et al., 2000, 2001), specifically with the paranoid type of

schizophrenia (Tachikawa et al., 2000, 2001) and positive symptom severity (Lu

et al., 2004; Zhang et al., 2000). Two studies have failed to find any association

between polymorphisms in the CCKB receptor gene and schizophrenia (Hattori

et al., 2001b; Tachikawa et al., 1999).

On the basis of biochemical and behavioral data demonstrating antidopami-

nergic and antipsychotic-like eVects of central CCK administration (for review see

Nair et al., 1986), the eYcacies of CCK-8, CCK-33, and the decapeptide caerulein

(a mixed CCKA and CCKB receptor agonist) have been tested in schizophrenic

patients in more than 20 clinical trials (for a summary see Table IV). Most of

these trials involved i.v. administration of CCK or caerulein (single to ten doses),

alone or in combination with antipsychotic drug maintenance therapy, to chronic

schizophrenic patients resistant to neuroleptic treatment. Initial open or single-

blind studies reported promising findings of symptom relief that lasted up to

several weeks in at least a subset of patients (for review see Montgomery and

Green, 1988 and Nair et al., 1986). However, 7 out of 10 double-blind studies

reported no diVerence from placebo (Albus et al., 1986; Hommer et al., 1984; Itoh

et al., 1986; Lotstra et al., 1984, 1985; Mattes et al., 1985; Nair et al., 1984, 1985;

Peselow et al., 1987; Tamminga et al., 1986; Verhoeven et al., 1986). Moreover,

caerulein monotherapy was found to be ineVective in two small clinical trials in

schizophrenia (Lotstra et al., 1984; Tamminga et al., 1986). The last clinical trial

with a CCK receptor agonist was nearly 20 years ago. The lack of eYcacy of

CCK in these trials could be related to the small number of patients, inadequate

dosing, poor brain penetration, or insuYcient treatment duration. The possibility

that CCK receptor agonists may represent a novel treatment option for a subset

of patients with schizophrenia probably merits additional study.

On the basis of the observation that CCK and CCK analogs stimulate

midbrain DA cell firing (Skirboll et al., 1981), the antipsychotic potential of the

CCK receptor antagonist proglumide was examined. Three clinical trials failed

to demonstrate eYcacy of proglumide in the treatment of schizophrenia (Hicks

et al., 1989; Innis et al., 1986; Whiteford et al., 1992).

336 CÁCEDA et al.



The few clinical studies evaluating gastrin found no evidence of a role for this

peptide in the pathophysiology of schizophrenia (Detera-Wadleigh et al., 1987;

Gjerris et al., 1984; Rafaelsen and Gjerris, 1985).

III. Corticotropin-Releasing Factor

The importance of stress on the course of schizophrenia is well established.

Stressful life events are associated with the onset of schizophrenia (Gruen and

Baron, 1984; LeV and Vaughn, 1980; LukoV et al., 1984), relapse frequency, and

psychotic decompensation (Altamura et al., 1999; Gispen-de Wied, 2000; Howes

et al., 2004; Norman et al., 2002). Additionally, schizophrenic patients are

more vulnerable to stress associated with minor life events (Cotter and Pariante,

2002; Gispen-de Wied, 2000). The 41 amino acid peptide CRF coordinates the

mammalian stress response in part via regulation of the hypothalamic-pituitary-

adrenal (HPA) axis and the autonomic nervous system (ANS). In the CNS, CRF-

containing neurons are found in the hypothalamus, amygdala, cerebral cortex,

septum, bed nucleus of the stria terminalis (BNST), cerebellum, brain stem, and

spinal cord (Fischman and Moldow, 1982). Following exposure to stress, CRF is

released from nerve terminals in the paraventricular nucleus of the hypothalamus

(PVN) into the portal circulation, binds to CRF receptors located in the anterior

pituitary, and induces the release of adrenocorticotropic hormone (ACTH) into

the general circulation. ACTH stimulates the release of cortisol from the adrenal

cortex. Cortisol is the final mediator of the stress response, modulating glucose

metabolism, blood pressure, and immune function. Finally, cortisol feeds back

negatively on the HPA axis, binding to glucocorticoid receptors at the level of the

hypothalamus, hippocampus, and anterior pituitary. Other members of the CRF

family including the urocortins and perhaps urotensin and savagine also partici-

pate in regulation of the stress response (Skelton et al., 2000). CRF has two known

receptors, CRF1 and CRF2 (also known as the urocortin receptor). Although still

under debate, anxiogenic and anxiolytic eVects are attributed to activation of

CRF1 and CRF2 receptors, respectively (NemeroV and Vale, 2005).

Some, but not all studies report a modest increase in CSF CRF concentra-

tions in schizophrenia, although of lesser magnitude than those found in depres-

sion (Banki et al., 1987, 1992a; Nishino et al., 1998). Further, discontinuation

of haloperidol maintenance therapy in chronic stable schizophrenic patients

is associated with increased CSF CRF concentrations (Forman et al., 1994).

In postmortem tissue, CRF-IR is decreased in the cingulate gyrus but not in

the frontal, temporal, or occipital cortices of schizophrenic patients with cogni-

tive impairment (Frederiksen et al., 1991; Gabriel et al., 1996). To the best of our
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TABLE IV

THE RESULTS OF CLINICAL TRIALS WITH NEUROPEPTIDE RECEPTOR AGONISTS AND ANTAGONISTS IN SCHIZOPHRENIC PATIENTS

Compound Class

Drug

administration Study design

Schizophrenic

patient

population APD therapy Outcome References

CCK-33 CCKA, CCKB

agonist

Single Open 6 Chronic

paranoid

Maintained Improvement Nair et al. (1982)

Single Open 21 Chronic

resistant

Maintained Improvement Nair et al. (1983)

CCK-8 CCKA, CCKB

agonist

Single Open 8 Chronic

resistant

Maintained Improvement Bloom et al. (1983)

4 d, b.i.d. Double-blind

cross-over

4 Chronic

resistant

Maintained Not diVerent from

placebo

Hommer et al. (1984)

1/wk for 8 wk Double-blind

w/placebo

9 Chronic Maintained Improvement in

cognition and

delusions

Nair et al. (1984)

1/wk for 8 wk Double-blind

w/placebo

14 Chronic Maintained Improvement Nair et al. (1985)

Single Double-blind

cross-over

30 Chronic

resistant

Maintained Not diVerent from

placebo

Peselow et al. (1987)

Caerulein CCKA, CCKB

agonist

Single Open 20 Chronic Maintained Improvement Moroji et al. (1982)

1–2 wk, q.d. Open 58 Chronic

resistant

Maintained Improvement in 23/58

cases

Itoh et al. (1982)

2 wk, 1/wk Open 6 Chronic Maintained Improvement Albus et al. (1984)

3 wk, 1/wk Double-blind

w/placebo

10 Chronic Maintained Not diVerent from

placebo

Albus et al. (1984)

Single Double-blind

cross-over

9 Chronic Drug-free Not diVerent from

placebo

Lotstra et al. (1984)

4 wk, b.i.d. Double-blind

cross-over

8 Chronic

resistant

Maintained Not diVerent from

placebo

Hommer et al. (1984)

1/wk for 2 wk Single blind 6 Chronic Maintained Improvement van Ree et al. (1984)

3
3
8



Single Double-blind

cross-over

17 Chronic Maintained Not diVerent from

placebo

Mattes et al. (1985)

Single Open 9 Chronic

resistant

Maintained No improvement Boza and Rotondo

(1985)

5 d, q.d. Double-blind

cross-over

5 Chronic Drug-free Not diVerent from

placebo

Tamminga et al.

(1986)

7 d, q.d. Double-blind

w/placebo

135 Chronic Maintained Not diVerent from
placebo

Itoh et al. (1986)

1 wk, 3 wk Double-blind

w/placebo

10 Chronic Maintained Not diVerent from

placebo

Albus et al. (1986)

7� in 3 wk Double-blind

w/placebo

15 Chronic Maintained Improvement, especially

in patients with less

negative symptoms

Verhoeven et al.

(1986)

Proglumide CCKA, CCKB 4–7 d, q.d. Double-blind

cross-over

4 Chronic Maintained No improvement Innis et al. (1986)

antagonist 4 wk, q.d. Open 4 Chronic

resistant

Maintained No improvement Hicks et al. (1989)

4 wk, b.i.d. Single-blind 7 Chronic

resistant

Maintained No improvement,

worsening in some

cases

Hicks et al. (1989)

4 wk, q.d. Double-blind

w/placebo

14 Chronic

resistant

Maintained Not diVerent from

placebo

Whiteford et al. (1992)

DT�E m, � Agonist 7 d, q.d. Open 6 Chronic

resistant

Drug-free Improvement of

psychotic symptoms

Verhoeven et al.

(1979)

8 d, q.d. Double-blind

cross-over

8 Chronic

resistant

Maintained (6) Improvement of

psychotic symptoms

Verhoeven et al.

(1979)

4 d, q.d. Double-blind

cross-over

13 Chronic

resistant

Maintained Not diVerent from

placebo

Emrich et al. (1980)

3 d, q.d. Open 10 Chronic Maintained No improvement Casey et al. (1981)

10 d, q.d. Open 11 Chronic Maintained No improvement,

euphoria in 3 cases

Manchanda and

Hirsch (1981)

10 d, q.d. Double-blind

w/placebo

17 Chronic Maintained Improvement Verhoeven et al.

(1982)

(Continued )

3
3
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12 d, q.d. Open 8 Mixed Drug-free Improvement in 6 Meltzer et al. (1982)

Single Open 5 Chronic Drug-free No improvement Tamminga et al.

(1981)

Single Open 4 Chronic Maintained No improvement Korsgaard et al.

(1982)

1/d, 8 d Double-blind

cross-over

9 Chronic Maintained Transient but modest

improvement

Volavka et al. (1983)

14 d, q.d. Open 6 Chronic Maintained No improvement Mizuki et al. (1986)

DE�E m, � Agonist 10 d, q.d. Double-blind

cross-over

18 Chronic Drug-free Improvement in subset

(hebephrenic,

paranoid types with

less negative

symptoms)

Verhoeven et al.

(1984b)

7� in 3wk Double-blind

w/placebo

15 Chronic Maintained Improvement in subset

(less negative

symptoms)

Verhoeven et al.

(1986)

4 wk, q.d. Double-blind

var. doses

93 Chronic Maintained Not diVerent from

placebo

Azorin et al. (1990)

4 wk, q.d. Double-blind

w/placebo

31 Chronic Drug-free Not diVerent from

placebo

Montgomery et al.

(1992)

Naltrexone m, �, �
Antagonist

6 wk, q.d.

to t.i.d.

Open 5 Chronic Maintained No improvement Mielke and Gallant

(1977)

7 wk, q.d. Double-blind

cross-over

8 Chronic Drug-free Not diVerent from

placebo

Gitlin et al. (1981)

14 wk, b.i.d. Double-blind

w/placebo

4 Chronic

negative

Maintained Not diVerent from
placebo

Marchesi et al. (1992)

2 wk, b.i.d. Double-blind

w/placebo

9 Chronic Maintained Improvement in positive

and negative

symptoms

Marchesi et al. (1995)

TABLE IV (Continued )

THE RESULTS OF CLINICAL TRIALS WITH NEUROPEPTIDE RECEPTOR AGONISTS AND ANTAGONISTS IN SCHIZOPHRENIC PATIENTS

Compound Class

Drug

administration Study design

Schizophrenic

patient

population APD therapy Outcome References
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Naloxone m, �, �
Antagonist

Single Single blind 6 Chronic Maintained Decreased hallucinations

in 4 patients

Gunne et al. (1977)

1 d, b.i.d. Double-blind

w/placebo

12 Chronic Maintained Not diVerent from

placebo

Kurland et al. (1977)

2 d, q.d. Double-blind

cross-over

9 Chronic Maintained Decreased hallucinations Watson et al. (1978)

Single Double-blind

cross-over

9 Chronic Maintained No improvement Lipinski et al. (1979)

2 d, q.d. Double-blind

cross-over

14 Chronic Maintained Decreased hallucinations Berger et al. (1981)

2 d, q.d. Double-blind

cross-over

11 Chronic Drug free Not diVerent from

placebo

Sethi and Prakash

(1981)

Single Double-blind

cross-over

13 Chronic

hallucinating

Maintained Freeman and

Fairburn, (1981)

2 d, q.d. Double-blind

cross-over

32 Chronic Drug free (13)

Maintained

(19)

Drug-free: not diVerent
from placebo APD-

treated: improvement

particularly in

hallucinations

Pickar et al. (1982)

2 d, q.d. Double-blind

cross-over

4 Chronic Maintained Improvement in

noncatatonics

Cohen et al. (1985)

4 d, q.d. Double-blind

cross-over

6 Chronic Maintained Not diVerent from

placebo

Naber and Leibl

(1983)

5 d, q.d. Double-blind

cross-over

12 Chronic Maintained Not diVerent from

placebo

Naber et al. (1983)

4 d, q.d. Double-blind

cross-over

43 Chronic Maintained Not diVerent from
placebo

Pickar et al. (1989)

4 d, q.d. Double-blind

cross-over

10 Maintained Placebo showed a

slightly better eVect

Verhoeven et al.

(1984a)

Interleukin-2 Single Open 44 Nonpsychiatric Drug free Induced psychotic

symptoms

DenicoV et al. (1987)

(Continued )

3
4
1



Oxytocin 6–10 d, q.d. Open Number not

reported

Not reported Improvement,

particularly in acute

cases

Bujanow (1972);

Bujanow (1974)

SR 48692 Neurotensin

receptor

(NT1)

antagonist

6 wk, q.d. Double-blind

multi-arm

63 Schizophrenics

and

schizoaVective

Drug-free Not diVerent from

placebo

Meltzer et al. (2004)

Secretin Single Double-blind

w/placebo

11 Severely ill,

resistant

Maintained Not diVerent from
placebo, improvement

in a subgroup

Sheitman et al. (2004)

Osanetant NK3

antagonist

6 wk, q.d. Double-blind

multi-arm

71 Schizophrenics

and

schizoaVective

Drug-free Improvement in positive

and cognitive

symptoms, Very mild

side eVects

Meltzer et al., 2004)

TRH 1/wk for 2 wk Open 10 Chronic Drug-free Improvement in aVect

and thought

Wilson et al. (1973)

5 d, q.d. Double-blind

cross-over

3 Chronic

resistant

Drug-free Worsening of symptoms

in 2 cases

Bigelow et al. (1975)

14 d, t.i.d. Open 9 Chronic Drug-free Worsening of symptoms Davis et al. (1975)

3 wk, q.d. Double-blind

cross-over

5 Chronic Maintained Not diVerent from

placebo

Clark et al. (1975)

TABLE IV (Continued )
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4 d, q.d. Double-blind

cross-over

10 Chronic Drug-free Not diVerent from

placebo, Increase in

TSH

Lindström et al.

(1977)

14 d, q.d. Double-blind

w/placebo

70 Chronic Maintained Global improvement,

onset within a week

Inanaga et al. (1978)

Single Single blind 5 Chronic Drug-free Improvement Prange et al. (1979)

Single Double-blind

w/placebo

12 Chronic Drug-free Transient improvement

in psychotic

symptoms

Prange et al. (1979)

14 d, q.d. Double-blind

cross-over

11 Chronic Maintained Not diVerent from
placebo, improvement

in aVect in some cases

Kobayashi et al.

(1980)

15� in 30 d Open 10 Chronic Maintained Improvement of

negative symptoms,

Transient borderline

hyperthyroidism

Brambilla et al. (1986)

DN-1417 TRH analogue 14 d, q.d. Open 6 Chronic Maintained Improvement in

hallucinations and

thought content,

Increase in frontal

EEG activity

Mizuki et al. (1986)

CCK, cholecystokinin; DT�E, des-tyrosine-gamma-endorphin; DE�E, des-enkephalin-gamma-endorphin; TRH, thyrotropin-releasing hormone; APD,

antipsychotic drug; wk, week; d, day; q.d., once daily; b.i.d., twice daily; t.i.d., three times a day.

3
4
3



knowledge, association studies between CRF system genes and schizophrenia or

the clinical eYcacy of CRF-related compounds in schizophrenia have not been

examined.

Several groups have reported increased baseline plasma cortisol concentra-

tions in schizophrenic patients, although of a lesser magnitude than in depressed

patients (for review see Altamura et al., 1999; Gispen-de Wied, 2000; Lieberman

and Koreen, 1993). This hypercortisolemia has been postulated to be associated

with an increase in inflammatory cytokines (Altamura et al., 1999). In addition, a

subset of schizophrenic patients displays cortisol hyposecretion following phar-

macological challenge of the HPA axis (i.e., dexamethasone, apomorphine, and

DA receptor antagonists) (Altamura et al., 1989; Coryell and Tsuang, 1992;

McGauley et al., 1989; Meltzer et al., 2001; Tandon et al., 2000, 1991; Yeragani,

1990). In the dexamethasone suppression test (DST), the best studied test of HPA

axis function in schizophrenia, rates of nonsuppression vary from 0% to 73%,

and are higher in drug-free than in medicated patients (Tandon et al., 1991). DST

nonsuppression, particularly in the drug-free state, is associated with negative

symptoms and is a predictor of poor outcome (Altamura et al., 1999; Coryell and

Tsuang, 1992; Tandon et al., 1991, 2000). An abnormal stress response in

schizophrenia is further supported by alterations in the regulation of the HPA

axis and the ANS. Alterations of ANS function in schizophrenia include

increased basal heart rate and abnormalities in temperature regulation and skin

conductance (Gispen-de Wied, 2000).

IV. Interleukins

Cytokines are small peptides produced by immune cells that serve as an

important component of the immune response. The eVects of cytokines on the

CNS have received considerable attention. Cytokines have both direct and

indirect access to the brain via the so called ‘‘leaky’’ regions in the blood-brain

barrier (i.e., the circumventricular organs), via cytokine-specific transporters in

endothelial cells and via vagal aVerents. Moreover, interleukin 2 (IL-2) and its

receptor are widely distributed in the brain (Lapchak et al., 1991). Of particular

interest to schizophrenia are studies demonstrating cytokine regulation of the

mesolimbic DA system. IL-2 enhances DA release in striatal slice preparations

(Lapchak, 1992; Petitto et al., 1997) and in vivo, systemic IL-2 administration

enhances norepinephrine (NE) and DA turnover in the hypothalamus and

prefrontal cortex, respectively (Zalcman et al., 1994) and induces hyperlocomo-

tion (Petitto et al., 1997). Further support for a possible role of cytokines in the

pathogenesis of schizophrenia was provided by the demonstration that prenatal

lipopolysaccaride exposure produces disruptions in sensorimotor gating (one of
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the core features of schizophrenia), increased serum IL-2 and IL-6 concentra-

tions, and distinct abnormalities in the DA system and glial cells in mesolimbic

regions in adult rats. The eVect of prenatal lipopolysaccaride exposure on

sensorimotor gating was reversed by antipsychotic drug administration (Borrell

et al., 2002).

Several additional lines of evidence suggest that cytokines may be involved in

the pathogenesis of schizophrenia. First, IL-2 administration produced psychotic-

like symptoms (paranoia and perceptual abnormalities) in nonpsychiatric patients

(DenicoV et al., 1987). Second, epidemiological studies have repeatedly demon-

strated associations between pre- and perinatal (see Pearce, 2001 for review) as

well as childhood (Koponen et al., 2004) viral infections and schizophrenia.

Moreover, several studies have reported immune abnormalities in schizophrenia

(reviewed in Muller et al., 2000; Rothermundt et al., 1998). These abnormalities

range from alterations in white blood cell counts and activation, to changes in

serum and CSF cytokine concentrations, and cytokine production by activated

lymphocytes. The most consistent cytokine findings in schizophrenia are de-

creased mitogen stimulated IL-2 and IFN-� production by CD4 lymphocytes,

increased CSF and serum concentrations of IL-2 and IL-6, and increased serum

soluble IL-2 receptors (for review see Smith, 1992). It has been suggested that

abnormally activated T lymphocytes oversecrete IL-2 leading to both increased

serum IL-2 concentrations and depletion of IL-2 in lymphocytes themselves

(Smith, 1992; Smith and Maes, 1995). These abnormalities are more pronounced

in patients with treatment-resistant schizophrenia, and have been associated with

the severity of positive symptoms and poor treatment outcome (Arolt et al., 2000;

McAllister et al., 1995; Zhang et al., 2002, 2005). In addition, antipsychotic drugs

seem to have an inhibitory eVect on inflammatory cytokines (Arolt et al., 2000;

Cazzullo et al., 2002; Rothermundt et al., 2000; Sirota et al., 2005; Song et al.,

2000; Zhang et al., 2005 but see also Kim et al., 1995; Muller et al., 1997).

In addition to the variability commonly observed in clinical studies, cytokine

studies exhibit diVerences in bioassays, cell preparation techniques, ongoing infec-

tious diseases, production of counterregulatory cytokines, stress, and circadian

variation. It has been suggested that abnormally activated T lymphocytes over-

secrete IL-2 leading to both increased serum IL-2 concentrations and depletion

of IL-2 in lymphocytes themselves (Smith, 1992; Smith and Maes, 1995).

A study with 230 schizophrenic patients found an association between a

single nucleotide polymorphism in the IL-2 gene and schizophrenia (Schwarz

et al., 2006). It is interesting to note that a double-blind, placebo-controlled study

revealed that addition of the cyclo-oxygenase 2 inhibitor celocoxib (an anti-

inflammatory drug used in the treatment of rheumatoid arthritis) to risperidone

markedly improved psychotic symptoms in schizophrenic patients (Muller et al.,

2004). Many of these immunologic abnormalities in schizophrenia resemble the

natural history (including age of onset, relapsing course, and diVerential gender
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distribution) of a number of well-known immune diseases such as rheumatoid

arthritis and systemic lupus erythematosus. Additionally, proinflammatory cyto-

kine concentrations are increased by stress and have been postulated to play a key

role in depression (Raison et al., 2006). Overall, it is tempting to posit a role for

proinflammatory cytokines, particularly IL-2, in the pathogenesis of schizophre-

nia, mostly in mediating the increase in schizophrenia associated with birth

season and perinatal insult.

V. Neurotensin

The 13 amino acid-containing peptide NT was first isolated by Carraway and

Leeman 1973 and is encoded on human chromosome 12 (Marondel et al., 1996).

NT is widely distributed in the gastrointestinal tract, circulatory system, and in

the central and peripheral nervous systems. In the CNS, NT is involved in

regulation of reward, pain and body temperature, and has been hypothesized

to play a role in the pathophysiology of schizophrenia, in the mechanism of

action of antipsychotic drugs and in drug abuse. There are three identified NT

receptors (NT1–NT3) and a fourth putative receptor (NT4). NT1 and NT2 are

GPCRs, whereas the NT3 and putative NT4 receptors are members of the

vacuolar sorting and LDL receptor families (Dobner, 2005; Vincent et al., 1999).

NT was first proposed by our group to be an endogenous antipsychotic in

1980 based on the close anatomical and neurochemical interactions between NT

and the DA system and the striking behavioral similarities between the eVects of
antipsychotic drugs and centrally administered NT (NemeroV, 1980). Since then,
copious data supporting this hypothesis have been published (for review see

Cáceda et al., 2003; Dobner, 2005; Kinkead and NemeroV, 2004).
The strongest clinical research evidence for the involvement of NT in schizo-

phrenia has been provided by the measurement of NT concentrations in the CSF

of drug-free and antipsychotic drug-treated schizophrenic patients. CSF NT

concentrations are independent of serum concentrations and are believed to

largely reflect CNS NTergic activity (Widerlöv et al., 1982). CSF NT concentra-

tions did not vary with patient age, duration of disease, or previous antipsychotic

drug treatment (Lindström et al., 1988). Low CSF NT concentrations have

consistently been found in a subset of drug-free schizophrenic patients relative

to normal volunteers and patients with other psychiatric disorders (Breslin et al.,

1994; Lindström et al., 1988; Manberg et al., 1985; NemeroV et al., 1989; Sharma

et al., 1994; Widerlöv et al., 1982). In this subset of patients, clinical improvement

(especially in negative symptoms) was associated with normalization of CSF

NT concentrations (Breslin et al., 1994; Garver et al., 1991; Sharma et al., 1997).
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Low CSF NT concentrations were positively correlated with the severity of

psychopathology, including thought disorder, deficit symptoms, disorganized

behavior, and impaired functioning (Garver et al., 1991; Sharma et al., 1997).

There is considerable specificity to schizophrenic patients, as CSF NT concentra-

tions were unchanged in patients with other neuropsychiatric conditions, includ-

ing anorexia/bulimia, depression, premenstrual syndrome, and Huntington’s

disease when compared to age-matched control subjects (NemeroV et al., 1989).

Until technological advances to assess CNS NTergic neurotransmission such as

the use of PET or SPECT to measure NT receptor subtype ligands are available,

CSF studies represent the best in vivo evidence of NT dysfunction in schizophre-

nia. Taken together, these studies reveal a subset of schizophrenic patients with

reduced NT neurotransmission.

Examination of the NT system in human postmortem tissue studies has

generated variable results with several negative studies (Manberg et al., 1982;

Palacios et al., 1991; Zech et al., 1986). Among the positive findings are increased

NT-IR in the frontal cortex (Manberg et al., 1985; NemeroV et al., 1983),

decreased NT receptor binding in layer II of the entorhinal cortex, caudate/

putamen, and cingulate cortex (Hamid et al., 2002; Lahti et al., 1998; Wolf et al.,

1995), and increased NT receptor binding in the substantia nigra of medicated

patients (Uhl and Kuhar, 1984). See Table III for summary of results.

Several polymorphisms have been identified in the noncoding region of the

human NT1 receptor gene (Austin et al., 2000a; Huezo-Diaz et al., 2004; Le et al.,

1997a,b; Watson et al., 1993). However, no associations have been found between

genetic variations in the NT or NT1 receptor genes and schizophrenia (Austin

et al., 2000a,b; Huezo-Diaz et al., 2004).

In contrast to the hypothesis that NT serves as an endogenous antipsychotic,

is evidence that NT receptor antagonists may exhibit antipsychotic properties.

Chronic administration of an NT receptor antagonist, like antipsychotic drugs,

produces depolarization block in the ventral tegmental area (Santucci et al.,

1997). Additionally, similar to the eVects of both NT receptor agonists (Feifel

et al., 1999) and antipsychotic drugs (Bakshi and Geyer, 1995; Geyer et al., 2001),

acute administration of an NT receptor antagonist prevents amphetamine- and

dizocilpine-induced disruption of prepulse inhibition (PPI) of the startle response

in rats (Cáceda et al., submitted for publication). These seemingly contradictory

findings are most likely explained by the diVerent roles played by distinct

anatomical NT circuits. NT has antipsychotic-like behavioral eVects in the NAcc

but stimulant-like behavioral eVects in the VTA (Cáceda et al., 2005; Feifel et al.,

1997; Kalivas et al., 1981, 1984). The antipsychotic-like eVects of systemic NT

receptor antagonists may be due to blockade of NT neurotransmission in regions

other than the NAcc, such as the VTA or subiculum. Despite this promissory

preclinical evidence that NT receptor antagonists may have antipsychotic drug
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properties, an NT receptor antagonist was ineVective in the treatment of refrac-

tory schizophrenic patients (Meltzer et al., 2004). The patient population used in

this study (refractory to antipsychotic drug treatment) and the testing of only a

single (possibly suboptimal) dose of the NT receptor antagonist limits any firm

conclusions to be drawn. Although NT receptor agonists have repeatedly been

shown to possess antipsychotic-like behavioral eVects in laboratory animals, no

clinical trials using an NT receptor agonist have been conducted. This delay is

due to the lack of a specific and potent small molecule NT receptor agonist.

VI. Neuropeptide Y

The pancreatic polypeptide family is composed of NPY, pancreatic polypep-

tide, peptide YY (PYY), and polypeptide Y. NPY is 36 amino acids long and is

encoded on human chromosome 7. The five known receptors for NPY (NPY1–

NPY5) are all GPCRs. Central NPY systems have been implicated in anxiety,

major depression, bipolar disorder, suicide, and schizophrenia (for review see

Obuchowicz et al., 2004).

Of the three studies in which NPY concentrations were measured in the CSF

of schizophrenic patients (Berrettini et al., 1987; Peters et al., 1990; Widerlöv et al.,

1988), only one found an increase in schizophrenic patients (drug free and

after haloperidol withdrawal) compared to normal controls (Peters et al., 1990).

In this study, CSF concentrations of NPY positively correlated with duration of

illness, the presence of abnormalities on brain CT scans and severity of clinical

symptomatology in stable patients (Peters et al., 1990).

Abnormal distribution of NPY positive interneurons (Ikeda et al., 2004) and

decreased NPY mRNA expression (Kuromitsu et al., 2001) were observed in the

dorsal prefrontal cortex of schizophrenic patients in postmortem studies, espe-

cially in the disorganized and paranoid type (but see Caberlotto and Hurd, 1999,

2001). Additionally, decreased NPY-IR was reported in the cingulate and tempo-

ral cortices of schizophrenic patients (Frederiksen et al., 1991; Gabriel et al., 1996).

Finally, morphological alterations in NPY positive fibers have been reported in

the CA4 region of the hippocampus in schizophrenia (Iritani et al., 2000;

Table III).

An association between a polymorphism in the promoter region of NPY

and schizophrenia was reported (Buckland et al., 2004; Itokawa et al., 2003) but

not replicated (Duan et al., 2005; Lindberg et al., 2006). In addition, two studies

found no association between polymorphisms in the NPY gene and schizophre-

nia (Detera-Wadleigh et al., 1987; Duan et al., 2005). There are no published

clinical trials in schizophrenia with compounds that increase or decrease NPY

neurotransmission.
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VII. Opioid Peptides

Three families of opioid peptides are known, each arising from diVerent genes
and precursor molecules: enkephalin A, proopiomelanocortin (POMC), and

proenkephalin B or prodynorphin. Met-enkephalin, �-endorphin, and dynor-

phin are the best known molecules (Table I). The precursor molecules undergo

extensive posttranslational modifications in the Golgi apparatus, including cleav-

age and acetylation. Opioid peptides interact with the m, �, �, and � GPCRs. The

opioid receptors are associated with, and display diVerential selectivity for, each

of the opioid peptides.

A. ENDORPHINS

Endorphins, relatively selective for the m receptor, are widely expressed in the

brain and spinal cord, particularly in the median eminence, periaqueductal gray

matter, and substantia nigra (Zamir et al., 1984). A large body of research has

investigated whether endorphins play a preeminent role in pain regulation,

reward, and drug addiction, as well as in schizophrenia and mood disorders.

The hypothesized role of endorphins in schizophrenia is based on the

antipsychotic-like eVects of �-endorphin in rodents and the reports of elevated

concentrations of nonbiologically active � and �-endorphins in the hypothala-

mus of schizophrenic patients (Wiegant et al., 1988). However, the existent

clinical research data do not support a role for endorphins in the pathophysiology

of schizophrenia (for review see De Wied and Sigling, 2002; Wiegant et al., 1992).

CSF �-endorphin concentrations in unmedicated schizophrenic patients have been

reported to be decreased (Naber et al., 1981; Pickar et al., 1981), unchanged (Burbach

et al., 1979; Emrich et al., 1979; Gerner and Sharp, 1982), or increased (Domschke

et al., 1979; Lindström et al., 1986, 1992) and decreased after antipsychotic drug

treatment (Lindström et al., 1986, 1992; Rimon et al., 1980).

Initial open and double-blind studies with �-endorphin or [Des-Tyr1]-gamma-

endorphin (DT�E) alone or in combination with antipsychotic drugs in schi-

zophrenic patients produced some positive results (see Wiegant et al., 1992 for

review), especially in the hebephrenic and paranoid subtypes (Verhoeven et al.,

1979, 1984). However, double-blind, placebo-controlled studies with more than

90 patients failed to demonstrate eYcacy compared to placebo (Azorin et al.,

1990; Montgomery et al., 1992). Similarly, although case reports and small pilot

studies reported that the opiate antagonists, naltrexone and naloxone, demon-

strate clinical eYcacy (particularly against hallucinations) double-blind placebo-

controlled studies failed to replicate these findings (see Welch and Thompson,

1994 for review).
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B. DYNORPHIN

� Opiate receptors have a high aYnity and are relatively selective for

dynorphin. Dynorphin is found in high concentrations in the neo- and allocor-

tices, caudate/putamen, NAcc, amygdala, BNST, hypothalamus, medial pretec-

tal area, nucleus of the optic tract, periaqueductal gray, raphe nuclei, and in brain

stem nuclei involved in pain and nociception (Fallon and Leslie, 1986). Increased

CSF concentrations of dynorphin were reported in unmedicated schizophrenic

patients compared to healthy controls or other psychiatric patients (Heikkilä et al.,

1990; Lindström, 1996), with no decrease after antipsychotic treatment. CSF

dynorphin concentrations were associated with symptom severity, as well as poor

clinical outcome (Heikkilä et al., 1990; Lindström, 1996 but see also Zhang et al.,

1985). Postmortem studies have revealed no alterations in dynorphin-IR or

� receptor expression in schizophrenic patients (Hurd, 2002; Iadarola et al.,

1991; Peckys and Hurd, 2001).

Although a direct association between polymorphisms in the prodynorphin

gene promoter and schizophrenia has not been observed, an increased risk of

susceptibility to schizophrenia was associated with the Ser9Gly polymorphism in

the DA D3 receptor, particularly in individuals carrying allele 3 of the prodynor-

phin gene. It was suggested that prodynorphin and DA D3 receptor genes

cooperatively contribute to a background of susceptibility to the development

of schizophrenia (Ventriglia et al., 2002).

C. ENKEPHALINS

� Receptors are relatively selective for the enkephalins. The anatomical

distribution of enkephalins is similar to dynorphin (Fallon and Leslie, 1986).

Few studies examining the role of enkephalins in schizophrenia have been

published. Decreased met-enkephalin concentrations were reported in the CSF

(Burbach et al., 1979; Wen et al., 1983) and caudate/putamen (Kleinman et al.,

1985) of schizophrenic patients. Increased met-enkephalin concentrations were

reported in the frontal cortex and substantia nigra, with no changes in the

thalamus, or parietal and occipital cortices (Toru et al., 1988).

A single mutation in the promoter region of the proenkephalin A gene was

found in one schizophrenic patient, but in a larger study no more subjects with this

mutation were found and its functional significance remains obscure (Mikesell

et al., 1997, 1996). Enkephalin-related compounds have not proven eYcacious in

the treatment of schizophrenia (Azorin et al., 1990; de Jongh et al., 1982; Jorgensen

et al., 1993).
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VIII. Secretin

In 1902, Bayliss and Starling identified the first peptide ever discovered,

secretin. Secretin, a member of the secretin/somatostatin/VIP superfamily, is

composed of 27 amino acids (for review see Chey and Chang, 2003). In the brain,

secretin is most abundant in the hippocampus and hypothalamus. Peripheral

secretin administration increases fos protein expression in the central nucleus of

the amygdala in rats (Goulet et al., 2003), induces cAMP formation in the hippo-

campus and hypothalamus (Karelson et al., 1995), and antagonizes Phencyclidine

(PCP)-induced PPI disruption in rats (Myers et al., 2005). In a double-blind clinical

trial in which patients with refractory schizophrenia received a single intravenous

injection of porcine secretin or placebo, a number of patients exhibited a transient

(up to 4 days) but significant improvement in symptoms, although the overall eVect
was not significant (Alamy et al., 2004; Sheitman et al., 2004). Data from human

and rodent studies suggest that the antipsychotic-like behavioral eVects of secretin
may be related to the eVects of secretin in the limbic system (amygdala or

hippocampus). Further investigation into the clinical potential of secretin in the

treatment of schizophrenia is warranted.

IX. Somatostatin

Somatostatin, also known as growth hormone release-inhibiting hormone,

was discovered in 1968 and five receptors have been identified, all of which are

GPCRs (see Panteris and Karamanolis, 2005 for review). Two cyclic splice

variants of somatostatin exist, 14 and 28 amino acids, each displaying unique

tissue distributions. Somatostatin 28 is the most abundant form in the nervous

system, with highest concentrations found in the olfactory tubercles, superior and

inferior colliculi, and cerebellum.

The majority of CSF studies found no significant diVerences in CSF somato-

statin concentrations in schizophrenic patients compared to controls (Banki et al.,

1992a,b; Gerner and Yamada, 1982; Heikkilä, 1993; Rubinow, 1986). However,

reports of both increased and decreased CSF somatostatin concentrations in drug

free schizophrenic patients have also been reported (Bissette et al., 1986; Gerner

et al., 1985). Variable results have also been obtained after antipsychotic drug

administration (Doran et al., 1989; Sharma et al., 1994). Low concentrations of

CSF somatostatin were reported in schizophrenic, as well as in other psychiatric

patients who were dexamethasone nonsuppressors, suggesting a functional rela-

tionship between HPA axis hyperactivity and reduced CSF somatostatin con-

centrations (Doran et al., 1986; Rubinow, 1986). Both plasma somatostatin
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concentrations (Saiz-Ruiz et al., 1992) and serum somatostatin autoantibodies

(Rogaeva et al., 1990; Roy et al., 1994) are repeatedly found to be increased in

schizophrenic patients.

Postmortem studies of somatostatin in schizophrenia consistently demon-

strate decreased somatostatin concentrations in the hippocampus of patients with

predominant negative symptoms (Ferrier et al., 1983; Roberts et al., 1983).

Decreased somatostatin concentrations have also been reported in cerebral

cortex and lateral thalamus in schizophrenia (Gabriel et al., 1996; NemeroV
et al., 1983; Roberts et al., 1983).

To date, no associations between somatostatin system genes and schizophrenia

have been reported (Detera-Wadleigh et al., 1987). Several somatostatin agonists

have been approved by the FDA for the treatment of cancer, diabetes, and

normalization of digestive function; however, no clinical trials in schizophrenia

have been conducted.

X. Vasoactive Intestinal Peptide

The 28 amino acid peptide VIP is a potent vasodilator with a wide distribu-

tion in the CNS and in the periphery (for review see Delgado et al., 2004). VIP

acts on two identified receptor subtypes (VPAC1 and VPAC2) and historically is

associated with regulation of digestive function (Harmar et al., 1998). There are

few studies exploring the role of VIP in schizophrenia.

No alterations in VIP concentrations have been found in the CSF of

schizophrenic patients (Gjerris et al., 1984; Rafaelsen and Gjerris, 1985). Postmor-

tem studies report increased VIP concentrations in the amygdala, particularly

in the central nucleus (Roberts et al., 1983; Zech et al., 1986). The most consistent

results have been decreased VIP concentrations in the lymphocytes of

schizophrenic patients, which are not altered by haloperidol treatment (Mauri

et al., 1998; Panerai and Sacerdote, 1993; Panza et al., 1992). This observation has

been postulated to be associated with the low prevalence of appendicitis in

schizophrenic patients (Lauerma, 1999).

XI. Tachykinins

Mammalian tachykinins include the closely related peptides substance P (SP),

neurokinin A, neurokinin B, neuropeptide K, neuropeptide �, and hemokinin 1.

The neurokinins share the common C-terminal sequence Phe-X-Gly-Leu-Met-

NH2 and are encoded by two preprotachykinin genes. All of the identified
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neurokinin receptors (NK1–NK3) are GPCRs (see Almeida et al., 2004 and Page,

2005 for review). Neurokinins and their receptors are widely and heterogeneously

distributed in the CNS, particularly in cerebral cortex, NAcc, amygdala, and

hypothalamus (Gale et al., 1978). NK3 is the dominant neurokinin receptor in the

rat brain, whereas in the human, NK1 is the most prevalent.

Substance P concentrations in CSF (Heikkilä et al., 1990; Miller et al., 1996;

Rimon et al., 1984) and plasma (Kaiya et al., 1981) of schizophrenic patients do

not diVer from controls. In postmortem studies, NK1 receptor-IR is increased in

the prefrontal cortex (Tooney et al., 2001). SP concentrations are increased in the

prefrontal cortex, thalamus, hippocampus, and substantia nigra (Roberts et al.,

1983; Toru et al., 1988) and decreased in the amygdala (Carletti et al., 2005;

Toru et al., 1988). Additionally, decreased preproptachykinin A mRNA expres-

sion was reported in the amygdala (Carletti et al., 2005). Two studies failed to

find associations between SP, or angiotensin converting enzyme (likely the en-

zyme largely responsible for SP degradation in the CNS) and susceptibility to

schizophrenia (Arinami et al., 1996; Detera-Wadleigh et al., 1987).

Because activation of NK3 receptors increases the firing rate of DA cells in

the VTA and subsequent DA release in the ventral striatum, it has been hypothe-

sized that NK3 receptor antagonists may possess antipsychotic-like behavioral

eVects (Marco et al., 1998; Nalivaiko et al., 1997; Seabrook et al., 1995) and two

clinical trials have demonstrated clinical eYcacy of NK3 receptor antagonists.

The nonpeptide NK3 receptor antagonist Talnetant (GlaxoSmithKline) was

eVective at improving positive and possibly cognitive symptoms in schizophrenic

patients in a phase II clinical trial (Spooren et al., 2005). Similarly, the nonpeptide

NK3 receptor antagonist Osanetant (SR 142801) improved total BPRS scores

and positive symptoms in patients with schizophrenia and schizoaVective disor-

der in a multiarm clinical trial (Meltzer et al., 2004). Both drugs were well

tolerated and their side eVects did not diVer from those of placebo. Additional

studies with both agents are currently underway.

XII. Thyrotropin-Releasing Hormone

The best characterized function of TRH is regulation of the hypothalamus-

pituitary-thyroid (HTP) axis. TRH is associated with two GPCR subtypes; TRH-

R1 and TRH-R2. TRH is found in the olfactory bulbs, piriform and entorhinal

cortices, hippocampus, amygdala, NAcc, olfactory tubercle, parvocellular por-

tion of the PVN and the periaqueductal central gray. In addition to a central role

in the regulation of the HPT axis, TRH has been hypothesized to play a role in

regulation of autonomic functions, arousal and cognition, locomotion, and water

intake (for review see Prokai, 2002).
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The TRH stimulation test assesses HPT axis function by measurement of

thyroid stimulating hormone (TSH) secretion after intravenous administration

of a standard dose of TRH. The TRH-induced TSH response is blunted in a

significant proportion (25–33%) of depressed, alcoholic, and personality disorder

patients (for review see Loosen, 1985). The frequency of a blunted TSH response

to TRH in schizophrenic patients is lower than that observed in other psychiatric

groups and has been associated with favorable antipsychotic drug response

(Braddock and Blake, 1981; Garver, 1988; Langer et al., 1986; Yazici et al.,

2002). No diVerence has been found in CSF TRH concentrations between

schizophrenic patients and controls (Banki et al., 1992a,b; Gjerris et al., 1985;

Sharma et al., 2001). The only positive finding in postmortem studies of

schizophrenic patients is decreased TRH-IR in the frontal cortex (Biggins et al.,

1983; NemeroV et al., 1983). Currently, there are no genetic studies of TRH

polymorphisms in schizophrenia.

Clinical trials with TRH or its analogues have produced variable results,

including exacerbation of symptoms (Bigelow et al., 1975; Davis et al., 1975;

Wilson et al., 1973), absence of therapeutic eVects (Clark et al., 1975; Lindström

et al., 1977) and improvement of positive and negative symptoms and emotionality

(Brambilla et al., 1986; Inanaga et al., 1978; Kobayashi et al., 1980; Mizuki et al.,

1985, 1986; Prange et al., 1979).

XIII. Other Peptides

On the basis of animal data, clinical studies have investigated the role of

galanin, hypocretin/orexin, arginine-vasopressin, oxytocin, and LHRH in

schizophrenia. Galanin-IR is reportedly reduced in the temporal (Frederiksen

et al., 1991) but not frontal or occipital cortex (Sharma et al., 1994) of

schizophrenic patients.

The close anatomical association between hypocretin/orexin and the meso-

limbic DA system was the basis for exploration of this peptide system in schizo-

phrenia. Whereas no diVerences in CSF hypocretin concentrations were found

between schizophrenic patients and control subjects, CSF hypocretin concentra-

tions were significantly correlated with sleep latency in schizophrenics, one of

the most consistent sleep abnormalities in schizophrenia (Nishino et al., 2002).

A study found decreased CSF hypocretin in patients with schizophrenia treated

with haloperidol, but not atypical antipsychotic drugs, compared to unmedi-

cated subjects (Dalal et al., 2003). Additionally, a single nucleotide polymorphism

in the hypocretin 1 receptor gene was associated with polydipsia-hyponatremia in

schizophrenia, a not uncommon condition that appears after years of antipsychotic
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drug treatment (Meerabux et al., 2005). Overall, these findings suggest that

hypocretin may be associated with antipsychotic drug response.

The nonapeptide arginine-vasopressin (AVP) plays a crucial role in the

control of water balance in humans. Considerable attention has been given to

AVP in relation to the common prevalence of hyponatremia in schizophrenic

patients (3–5%) who develop potentially fatal episodes of water intoxication

associated with impaired water secretion (de Leon et al., 1994). Schizophrenic

patients, particularly the subset that develops hyponatremia, display increased

AVP plasma concentrations (Delva et al., 1990; Ryan et al., 2004) and alterations

in AVP regulation (Goldman et al., 1996; Kishimoto et al., 1989; Ohsawa et al.,

1993). Additionally, water intoxication crises and enhanced AVP release often

coincide with psychotic exacerbations (Goldman et al., 1997). CSF studies have

found no diVerence in AVP between schizophrenic patients and controls (Gjerris

et al., 1985; Glovinsky et al., 1994; Sorensen et al., 1985). Decreased AVP content

was reported in the temporal cortex, but not the hypothalamus, of schizophrenic

patients (Frederiksen et al., 1991).

The neurohypophyseal peptide oxytocin, best known for its role in parturi-

tion, lactation, and regulation of social behavior, has also been studied in schiz-

ophrenic patients. CSF oxytocin levels were increased in drug naı̈ve patients

and increased with antipsychotic drug treatment (Beckmann et al., 1985 but

also see Glovinsky et al., 1994). One investigator has reported improvement of

psychotic symptoms in open clinical trials with oxytocin (Bujanow, 1972).

Luteinizing hormone-releasing hormone (LHRH), (gonadotropin-releasing

hormone (GnRH) or gonadorelin, controls sex hormones and regulates repro-

ductive behavior in humans and several mammals. Normal basal secretion of

gonadorelin has been reported in men, women, and adolescent schizophrenic

patients (Apter et al., 1983; Brown et al., 1995; Gil-Ad et al., 1981). However,

increased response of growth hormone (Gil-Ad et al., 1981) and LH (Brambilla

et al., 1976 but also see Brown et al., 1995), to LHRH challenge has also been

described. The eVect of antipsychotic drug treatment on the response to LHRH

is unclear (Apter et al., 1983; Brambilla et al., 1976; Gil-Ad et al., 1981; Naber

et al., 1980). No postmortem studies or clinical trials involving LHRH have been

published.

Neuregulin 1 (NRG1) is part of epithelial growth factor family and is asso-

ciated with the erB receptors. Neuregulin has crucial roles in neurodevelopmen-

tal processes, including neuronal migration, myelination, hormonal control of

puberty, synaptic plasticity, and regulation of neurotransmitter expression and

signaling (Corfas et al., 2004; Owen et al., 2005). An initial report from a genome-

wide scan identified a haplotype in the 50-end of the NRG1 gene with a highly

significant association with schizophrenia in an Icelandic population (Stefansson

et al., 2002). Subsequently, NRG1 has been repeatedly found to be a susceptibility
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gene for schizophrenia in subjects of European (Bakker et al., 2004; Corvin et al.,

2004; Green et al., 2005; Norton et al., 2006; Petryshen et al., 2005; Stefansson

et al., 2003; Williams et al., 2003), Asian (Fukui et al., 2006; Li et al., 2004, Liu et al.,

2005; Tang et al., 2004; Yang et al., 2003; Zhao et al., 2004), and African descent

(Lachman et al., 2006) (but also see (Hong et al., 2004; Iwata et al., 2004; Kampman

et al., 2004; Thiselton et al., 2004). Additionally, the NRG1 gene has been

associated with poor response to antipsychotic drugs (Kampman et al., 2004)

and susceptibility to bipolar disorder (Green et al., 2005; Tkachev et al., 2003).

Furthermore, NRG1 gene is suspected to interact with erB4 to increase suscepti-

bility to schizophrenia (Norton et al., 2006). In agreement with these genetic

studies are reports of decreased expression or altered expression of NRG1

(Hashimoto et al., 2004) and its receptor erB3 (Hakak et al., 2001; Tkachev

et al., 2003) and erB4 (Silberberg et al., 2006) in the prefrontal cortex of

schizophrenic patients. Overall, NRG1 despite its relatively recent identification,

is the one with the strongest genetic data in schizophrenia and its study promises

to greatly expand our understanding of this disease.

XIV. Conclusions

A clear role for neuropeptides in the etiology, pathophysiology, and treatment

response of schizophrenia has not been consistently demonstrated. Factors con-

tributing to the negative clinical data include the lack of identifiable subgroups of

schizophrenic patients, the inherent heterogeneity associated with human studies

(including low subject number and heterogeneity of the patient population), and

inadequate methods for evaluation of peptide systems antemortem.

In postmortem studies, the frontal and temporal cortices show the most consis-

tent abnormalities in neuropeptides and neuropeptide receptors in schizophrenic

patients. These abnormalities are primarily of a quantitative (variation in the

concentration of peptides or their receptors) rather than qualitative (variation in

the distribution of peptides or their receptors) nature. Despite substantial preclinical

evidence suggesting that neuropeptide systems in the mesolimbic pathways

(specifically in the NAcc and VTA) may be involved in the pathophysiology of

schizophrenia, postmortem data do not support this hypothesis.

Overall, genetic evidence of neuropeptide abnormalities in schizophrenia is

weak, with the possible exception of the association between polymorphisms in

the NRG1 gene and schizophrenia, as well as in the CCKA receptor gene and

positive symptoms. Ultimately, polymorphisms in the promoter regions, rather

than in processing regions (i.e., exons and introns), of neuropeptide genes may

prove more likely to be associated with the degree of gene expression and with

the pathogenesis of schizophrenia (Tachikawa et al., 2000, 2001).
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Numerous agonist and antagonist ligands for neuropeptide receptors have

been developed and tested for clinical eYcacy in the treatment of schizophrenia.

Although the majority of clinical trials are negative (possibly due to low sample

size, short treatment duration, and the use of treatment-resistant populations)

data support further development and testing of NK3 receptor antagonists, and

possibly secretin, TRH, and CCKA and NT receptor agonists. In addition to

larger controlled clinical trials to replicate and extend these findings, the use of

psychopharmacogenetics would allow identification of specific subgroups of

patients that would benefit from specific treatments. Additionally, although data

support the testing of peptide agonists within several peptide systems, neuropep-

tide receptor antagonists seem to be the prime pharmacological targets to pursue,

due to the greater availability of small molecule nonpeptide antagonists (with

greater stability and ability to cross the blood-brain barrier) and reduced likelihood

of developing receptor downregulation and tachyphylaxis.
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Bissette, G., Widerlöv, E., Walleus, H., Karlsson, I., Eklund, K., Forsman, A., and NemeroV, C. B.

(1986). Alterations in cerebrospinal fluid concentrations of somatostatin-like immunoreactivity in

neuropsychiatric disorders. Arch. Gen. Psychiatry 43, 1148–1154.

Bloom, D., Nair, N. P., and Schwartz, G. (1983). CCK-8 in the treatment of chronic schizophrenia.

Psychopharmacol. Bull. 19, 361–363.

Borrell, J., Vela, J. M., Arevalo-Martin, A., Molina-Holgado, E., and Guaza, C. (2002). Prenatal

immune challenge disrupts sensorimotor gating in adult rats: Implications for the etiopathogen-

esis of schizophrenia. Neuropsychopharmacology 26, 204–215.

Bowen, T., Norton, N., Jacobsen, N. J., Guy, C., Daniels, J. K., Sanders, R. D., Cardno, A. G., Jones,

L. A., Murphy, K. C., McGuYn, P., Craddock, N., O’Donovan, M. C., et al. (1998). Linked

polymorphisms upstream of exons 1 and 2 of the human cholecystokinin gene are not associated

with schizophrenia or bipolar disorder. Mol. Psychiatry 3, 67–71.

Boza, R. A., and Rotondo, D. J. (1985). Is cholecystokinin therapeutic in chronic schizophrenia? J. Clin.

Psychiatry 46, 485–486.

Braddock, L. E., and Blake, I. M. (1981). Neuroendocrine tests during treatment with neuroleptic

drugs. II. The TRH test. Br. J. Psychiatry 139, 404–407.

Brambilla, F., Rovere, C., Guastalla, A., Guerrini, A., and Riggi, F. (1976). Gonadotropin response to

synthetic gonadotropin hormone-releasing hormone (GnRH) in chronic schizophrenia. Acta

Psychiatr. Scand. 54, 131–145.

Brambilla, F., Aguglia, E., Massironi, R., Maggioni, M., Grillo, W., Castiglioni, R., Catalano, M., and

Drago, F. (1986). Neuropeptide therapies in chronic schizophrenia: TRH and vasopressin

administration. Neuropsychobiology 15, 114–121.

Breslin, N. A., Suddath, R. L., Bissette, G., NemeroV, C. B., Lowrimore, P., and Weinberger, D. R.

(1994). CSF concentrations of neurotensin in schizophrenia: An investigation of clinical and

biochemical correlates. Schizophr. Res. 12, 35–41.

Brown, A. S., Hembree, W. C., Friedman, J. H., Kaufmann, C. A., and Gorman, J. M. (1995). The

gonadal axis in men with schizophrenia. Psychiatry Res. 57, 231–239.

Buckland, P. R., Hoogendoorn, B., Guy, C. A., Coleman, S. L., Smith, S. K., Buxbaum, J. D.,

Haroutunian, V., and O’Donovan, M. C. (2004). A high proportion of polymorphisms in the

promoters of brain expressed genes influences transcriptional activity. Biochem. Biophys. Acta 1690,

238–249.

NEUROPEPTIDES AND SCHIZOPHRENIA: HUMAN STUDIES 359



Bujanow, W. (1972). Hormones in the treatment of psychoses. Br. Med. J. 4, 298.

Bujanow, W. (1974). Is oxytocin an anti-schizophrenic hormone? Can. Psychiatr. assoc. J. 19, 323.

Burbach, J. P., Loeber, J. G., Verhoef, J., de Kloet, E. R., van Ree, J. M., and de Wied, D. (1979).

Schizophrenia and degradation of endorphins in cerebrospinal fluid [letter]. Lancet 2, 480–481.

Caberlotto, L., and Hurd, Y. L. (1999). Reduced neuropeptide Y mRNA expression in the prefrontal

cortex of subjects with bipolar disorder. Neuroreport 10, 1747–1750.

Caberlotto, L., and Hurd, Y. L. (2001). Neuropeptide Y Y(1) and Y(2) receptor mRNA expression in

the prefrontal cortex of psychiatric subjects: Relationship of Y(2) subtype to suicidal behavior.

Neuropsychopharmacology 25, 91–97.
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Heikkilä, L. (1993). Somatostatin in the cerebrospinal fluid of schizophrenic patients before and after

neuroleptic drug treatment. Schizophr. Res. 8, 273–277.
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*Unité de Psychiatrie, UFR de Médecine et de Pharmacie de Rouen, France
yCHU Ch. Nicolle et Centre Hospitalier du Rouvray, INSERM U614, UFR de Médecine et de

Pharmacie de Rouen, France

I. Introduction

II. Genetic Studies

III. BDNF in the Serum of Patients with Schizophrenia

IV. BDNF and TrkB Receptor in the Brain of Patients with Schizophrenia

V. Dopamine–BDNF Interactions

A. BDNF Supports the Survival and the Differentiation of Dopaminergic Neurons

B. BDNF in the GABA-Containing Local Circuit Neurons of the Prefrontal Cortex

C. Functional Interplay Between BDNF and Dopamine

D. BDNF Controls the Expression of the Dopamine D3 Receptor

VI. Conclusions

References

The brain-derived neurotrophic factor (BDNF) belongs to the neurotrophins

family and has a role in proliferation, diVerentiation of neurons but also as a

neurotransmitter. This neurotrophin has received much attention during the last

year in regard of the pathophysiology of schizophrenia. Results of genetic studies

conducted in schizophrenia support a role for BDNF in schizophrenia and in

brain function associated with the disorder. The changes of BDNF observed in

the brain and in the plasma of patients with schizophrenia have generated results

that can be interpreted either as a hallmark of the disease or a consequence of

antipsychotic drugs. Antipsychotic drugs act by blocking the dopamine transmis-

sion at the dopamine D2-like receptors. BDNF controls the expression of one of

these D2-like receptors, the dopamine D3 receptor. This raises the hypothesis of

a link between cortical area, via BDNF, and the dopamine neurotransmission

pathway in schizophrenia and its treatment.

I. Introduction

The brain-derived neurotrophic factor (BDNF) belongs to the neurotrophins

family, which comprises the prototypical member nerve growth factor (NGF),

neurotrophine-3 (NT-3), and neurotrophine-4/5 (NT-4/5). NGF was initially
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identified as being responsible for proliferation, diVerentiation, and function of

sympathetic nerve cells (Levi-Montalcini and Cohen, 1960). Neurotrophins can

act after their neuronal uptake and retrograde transport to the soma, through

their high-aYnity tropomyosine-related tyrosine (Trk) receptors and the low-

aYnity p75NTR receptor, a member of the tumor necrosis factor (TNF) receptor

family (Thoenen, 1995). Trks display specificity for the neurotrophins: NGF only

binds with high aYnity to TrkA, NT-3 to TrkC and TrkB, BDNF, and NT-4/5 to

TrkB. These receptors possess an intracellular tyrosine kinase domain, which

transduce the neurotrophins signal by autophosphorylation and subsequent

recruitment of enzymes such as phosphatidylinositol-3 kinase or adaptor proteins

such as ShC linked to various serine/threonin kinases (Thoenen, 1995).

It was admitted that, whereas interaction with the Trk receptor promotes cell

survival, interaction with p75NTR promotes cell death. Data have challenged this

overly simplistic dual scheme (Kalb, 2005; Lu et al., 2005). Neurotrophins are

synthesized in a precursor form (proneutrophins), which generate the mature

neurotrophins through proteolytic cleavage. Proneurotrophins bind with higher

aYnity to p75NTR than do mature neurotrophins, but they do not bind to Trk

receptors (Lee et al., 2001). Moreover, complexes of p75NTR, or homologues of

this receptor (Kanning et al., 2003) with either sortilin or Trk receptor modulate the

aYnity of the neurotrophins (Kalb, 2005). It results form these considerations

that life–death decisions in neurons depend not only on neurotrophic supply but

also on the pro- and mature-neurotrophin balance (Lu et al., 2005).

A more diverse role for BDNF as an extracellular transmitter has, neverthe-

less, been inferred from observations that it is anterogradely transported (Altar

et al., 1997; von Bartheld et al., 1996), released on neuron depolarization, and

triggers rapid intracellular signals (Altar and DiStefano, 1998; Thoenen, 1995)

and action potentials in central neurons (Kafitz et al., 1999) via intracellular

transduction of its high-aYnity membrane receptor TrkB (Blum et al., 2001).

BDNF can alter fast synaptic transmission by speeding up the development of

excitatory and inhibitory synapses (Vicario-Abejon et al., 1998) but also by

modulating synaptic eYcacy (Huang et al., 1999; Lohof et al., 1993). In particular,

BDNF is necessary for the induction and maintenance of hippocampal long-term

potentiation (Barco et al., 2005; Figurov et al., 1996; Korte et al., 1995; Kovalchuk

et al., 2002; Patterson et al., 1996). ProBDNF demonstrate opposite function in

activating p75(NTR) which facilitates hippocampal long-term depression (Woo

et al., 2005). As suggested in life–death decision, a bidirectional regulation of

synaptic plasticity by proBDNF and mature BDNF might exist. Although some

observations suggest a role of BDNF in nociception (Kerr et al., 1999), mechan-

osensation (Carroll et al., 1998), and learning (Du and Poo, 2004; Egan et al.,

2003; Lee et al., 2004; Linnarsson et al., 1997; Minichiello et al., 1999).

For more than 40 years, dopamine has been consistently implicated in the

pathophysiology of schizophrenia and its treatment (Carlsson, 1995). Evidences
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have emerged showing BDNF-induced synaptic plasticity and modulating the

physiological functions of the dopamine transmission pathway (Berton et al.,

2006; Goggi et al., 2003; Grimm et al., 2003; Guillin et al., 2001; Horger et al.,

1999; Monteggia et al., 2004).

In this chapter, we propose to review evidences generated by genetic, plasma,

and brain concentration of BDNF studies in the human aVected by schizophrenia
and the relationship between dopamine and BDNF.

II. Genetic Studies

The BDNF gene is localized on the reverse strand of chromosome 11p13 and

encodes a precursor peptide (proBDNF), with a strong conservation of the coding

sequence across species. The gene consists of four short 50 exons with separate

promoters and one 30 exon encoding mature BDNF protein (Metsis et al., 1993;

Timmusk et al., 1993).

In schizophrenia, no significant linkage has been reported in this region in the

large genome-wide scan studies. In bipolar disorders, a linkage study has gener-

ated an LOD score of 1.89 in bipolar families (Detera-Wadleigh et al., 1999).

Genetic association studies have been carried out in order to determine and

define the association between polymorphisms located in the BDNF gene and

schizophrenia.

In 1992, the first study by Pröschel et al. (1992) described a microsatellite: GT

dinucleotide repeat polymorphism (166–174 bp) in the human BDNF gene,

upstream from the transcription start site of the 1.6-kb BDNF mRNA transcript

(Pröschel et al., 1992). Many studies have been conducted in order to find a

possible association between this polymorphism and schizophrenia (Hawi et al.,

1998; Krebs et al., 2000; Sasaki et al., 1997; Virgos et al., 2001; Wassink et al., 1999).

No association was found between this polymorphism and schizophrenia, except

for the Italian family study (Muglia et al., 2003). A French study found no

statistical diVerence in allele or genotype distribution of this polymorphism

between schizophrenic patients and controls (Krebs et al., 2000). However and

interestingly, the authors revealed an excess of the 172- to 176-bp alleles in late

onset, neuroleptic-responding patients (n ¼ 68 patients) and in nonsubstance

abuse patients (n ¼ 52 patients).

BDNF plays an important role in activity-dependent hippocampal neuro-

plasticity and hippocampal-dependent memory. The valine-to-methionine varia-

tion at codon 66 of BDNF coding sequence, located in the 50 proregion of the

BDNF protein, is a frequent single nucleotide missense and functional polymor-

phism in the human BDNF gene (Egan et al., 2003). The presence of the
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Val66Met has been associated with abnormal intracellular traYcking and

activity-dependent secretion of BDNF in cultured hippocampal neurons (Egan

et al., 2003). In fact, both lower depolarization-induced secretion and failure to

localize to secretory granules or synapses were demonstrated for 66Met BDNF-

transfected neurons using virus-mediated transfection in cultured hippocampal

neurons, compared with 66Val BNDF (Egan et al., 2003).

In human subjects, the Met allele is associated with impaired episodic

memory assessed with the Wechsler Memory Scale (WMS) (Egan et al., 2003;

Tan et al., 2005a). However, these data have only been partially replicated, since

schizophrenic patients and relatives were analyzed separately: 66Met was asso-

ciated with a lower score at the WMS but only in relatives (Dempster et al., 2005).

The Met carriers (healthy subjects) exhibit relatively diminished hippocampal

activity in comparison with the Val/Val subjects during both encoding and

retrieval processes. This impairment was directly linked to abnormal hippocam-

pal activation: Val/Met individuals have an abnormal pattern of increased

BOLD fMRI signal activation of bilateral caudal hippocampus. In contrast,

Val/Val subjects show a characteristic hippocampal deactivation pattern (Egan

et al., 2003). A direct eVect of BDNF alleles on hippocampal processing of

memory was then demonstrated when the same group showed that the interac-

tion between the BDNF Val66Met genotype and the hippocampal response

during encoding accounted for 25% of the total variation in recognition memory

performance (Hariri et al., 2003). Moreover, this polymorphism in the BDNF

gene aVects the morphology of the brain: Met-carriers have a reduction in hippo-

campal gray matter and in the dorsolateral prefrontal cortex compared to the

Val-carrier (Pezawas et al., 2004). Significant interaction between prefrontal

cognitive performance (the N-back test) and Val/Val genotype implicates that

working memory could also be aVected by the BDNF Val66Met polymorph-

ism (Rybakowski et al., 2006). Moreover, Val66Met seems to be associated

with age-related change in reasoning skills. In a cohort of healthy subjects, aged

79 years at the time of the study whom reasoning was assessed by the Raven’s

progressive, Met homozygotes scored significantly higher than heterozygotes and

Val homozygotes (Harris et al., 2006).

A study has examined a large schizophrenia sample (n ¼ 321) in comparison

with bipolar patients (n ¼ 321) and controls (n ¼ 350), testing haplotype frequen-

cies for the BDNF GT dinucleotide-repeat and the Val66Met polymorphisms

(Neves-Pereira et al., 2005). The authors underlie a significant excess of the Val

haplotype in schizophrenics without stratification bias and suggest that Met or

Met combined with the 174-bp haplotypes may be a protective factor against

schizophrenia. In a large sample of 94 families, a transmission disequilibrium test

(TDT) showed a preferential transmission of the Val allele from the heterozygous

parents (Val/Met) to their aVected schizophrenic oVspring (Rosa et al., 2006).
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However, no association was found between the prefrontal tests assessed (WMS)

and the BDNF Val/Met polymorphism in this sample (Rosa et al., 2006).

Three single nucleotide polymorphisms (rs3750934, rs6265, and ro. 000001)

have been investigated in an association study in the Chinese population (Chen

et al., 2006). No significant diVerences were found for either the genotype or allele

distribution of analyzed polymorphisms.

BDNF and dopamine D3 receptor (DRD3) interplay might be of special

interest in schizophrenia (Guillin et al., 2004). Interestingly, an interaction be-

tween BDNF Met-containing haplotypes and DRD3 receptor ser/ser haplotypes

has been found in early age at onset of schizophrenia (Gourion et al., 2005).

Association between BDNF polymorphisms and response to antipsychotic

treatment or tardive dyskinesia have been also investigated. An association bet-

ween the BDNF gene Val66Met polymorphism and a good response to clozapine

treatment in schizophrenia was found (Hong et al., 2003). Association and gene–

gene interaction between the DRD3 ser9gly and BDNF Val66Met polymorph-

isms have been investigated in a cohort of patients with schizophrenia who had

significantly high abnormal involuntary movements (Liou et al., 2004). Hetero-

zygoty for the BDNF genotype was associated with abnormal orofacial move-

ment scores but neither DRD3 nor BDNF genotypes were clearly associated with

tardive dyskinesia and no gene interaction was found.

A single nucleotide substitution (C270T) in the 50 noncoding BDNF region

was described and a significant association with late-onset Alzheimer disease and

T270 was found (Kunugi et al., 2001). Comparing schizophrenic patients (n ¼
178) and controls (n ¼ 332), the frequency of this nucleotide substitution was

significantly increased in schizophrenia (Nanko et al., 2003). The association was

replicated in another sample. The C/T genotype was overrepresented in schizo-

phrenics (n ¼ 101, 25.7%) compared to controls (n ¼ 68, 5.9%), despite a

heterogeneity between populations (Szekeres et al., 2003). However, another

study has found no association between schizophrenia and the C270T polymor-

phism in the BDNF gene for genotype and allelic distribution (Szczepankiewic

et al., 2005). Galderisi et al. (2005) have studied two polymorphisms: COMT

Val158Met and BDNF C270T in patients with schizophrenia versus controls.

This case control association study does not report evidence for association be-

tween these polymorphisms and schizophrenia. The functional significance of

C270T substitution in the promoter region of BDNF is not clear and there is no

evidence that the C270T is involved in alterations of protein expression or

function.

In conclusion, BDNF gene is a relatively new and promising target in genetic

studies of mental disorders. Concerning schizophrenia, the initial results need

replication. However, considering a polygenic model of schizophrenia transmission,

BDNF can be involved in a genetic modulation pathway.
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III. BDNF in the Serum of Patients with Schizophrenia

BDNF can be detected in the plasma of patients with schizophrenia and

controls. To date, seven studies (summarized in Table I) have investigated BDNF

plasma levels in patients with schizophrenia, drug free (Pirildar et al., 2004;

Shimizu et al., 2003), drug naı̈ve, with substance abuse ( Jockers-Scherubl et al.,

2004; Pirildar et al., 2004), chronically treated with antipsychotics drugs ( Jockers-

Scherubl et al., 2004; Pirildar et al., 2004; Shimizu et al., 2003; Tan et al., 2005b,c;

Toyooka et al., 2002) and the relationship with the presence of tardive dyskinesia

(Tan et al., 2005c). In drug-naı̈ve patients no change in BDNF plasma levels was

found ( Jockers-Scherubl et al., 2004; Shimizu et al., 2003) whereas conflicting

results have emerged from studies with drug-free patients: in one study BDNF

plasma levels was decreased (Pirildar et al., 2004) and there was no change in the

second one (Huang and Lee, 2005). In patients with schizophrenia treated with

antipsychotic drugs at the time BDNF plasma levels were determined, decreased

(Grillo et al., 2007; Tan et al., 2005b,c; Toyooka et al., 2002), or normal (Shimizu

et al., 2003) plasma levels compared to controls were observed. Interestingly, tardive

dyskinesia (Tan et al., 2005c) and substance abuses ( Jockers-Scherubl et al., 2004)

have been found to be associated with decreased BDNF plasma levels in patients

with schizophrenia.

Altogether these results seem to indicate that BDNF plasma levels are de-

creased in medicated patients with schizophrenia. However, the source of BDNF

found in the plasma is still unknown as the relationship between plasma and

brain levels. Nevertheless, brain- and plasma-level changes are correlated during

aging in rats (Karege et al., 2002). One way to explain the conflicting results

between plasma levels found in patients chronically treated with antipsychotic

drugs and drug-naı̈ve patients might be the possible ability of antipsychotic drugs

to decrease BDNF expression (Section IV).

IV. BDNF and TrkB Receptor in the Brain of Patients with Schizophrenia

Several studies have been conducted in order to determine BDNF protein

or mRNA and TrkB mRNA levels in the postmortem brain tissue from patients

with schizophrenia.

In the first study to be published, a significant increase of BDNF pro-

tein, determined by immunoassay, was found in the anterior cingulate and the

hippocampus (Takahashi et al., 2000). This was confirmed in another collection

of brain tissue in the cortical areas but not in the hippocampus (Durany et al., 2001).
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TABLE I

BDNF PLASMA LEVELS IN SCHIZOPHRENIA

Author N controls N patients

Treatment

Status

Controls

(n. mean � SD)a
Patients

(n. mean � SD)a

Patients

subtype

(n. mean � SD)a p

EVect
sizeb

Tan et al. (2005b) 45 81 M 100 � 43 74 � 26 <0.001 0.6

Tan et al. (2005c) 45 125 M 100 � 43 66 � 263 55 � 174 3vs controls ¼ 0.002 30.8
4vs controls <0.01 41.05

Jockers-Scherubl

et al. (2004)

72 157 DN 100 � 40 99 � 45 134 � 555

129 � 456

5vs controls ¼ 0.0062 50.85
6vs controls ¼ 0.0131 60.725

Pirildar et al. (2004) 22 22 DF1 100 � 35 53 � 30 <0.001 1.34

Shimizu et al. (2003) 40 40 15 DN 100 � 32 84 � 287 98 � 438 NS 0.5

25 M

Toyooka et al. (2002) 62 2 independent

groups of 34

M 100 � 67 55 � 30 0.004 0.67

Huang and Lee (2005) 96 126 DF2 100 � 48 100 � 49 NS

aMean normalized to mean of control subjects.
bEVect size calculated as (mean patients � mean controls)/SD controls.

M, patients taking antipsychotics drugs at the time of the study; DN, drug naı̈ve; DF, drug free for at least 2 weeks1 or 1 week2.

Patients with schizophrenia without3 and with tardive dyskinesia4; with cannabis intake5 or cannabis and additional substances6; drug naı̈ve,7 or medicated8.

NS, nonsignificant.

3
8
3



A very comprehensive paper using three diVerent methods to determine BDNF

levels, RNAse protection assay, Western blotting, and in situ hybridization was pub-

lished 3 years later (Weickert et al., 2003). In this study, BDNF mRNA and protein

was decreased in the lateral prefrontal cortex of patients with schizophrenia,

especially in the layers III, V, and VI. This result was confirmed by another

group in two independent cohorts (Hashimoto et al., 2005). Combining the

two independent cohorts, the authors found in the prefrontal cortex a 35% decrease

of BDNF mRNA in layers II, III, and V/VI. In the same sample of post-

mortembrain tissue, TrkBmRNAwas found to bedecreased in the prefrontal cortex

by 23% (Hashimoto et al., 2005). The same result was found in the brain collection of

the NIMH in the dorsolateral prefrontal cortex (Weickert et al., 2005).

To date, two from four studies indicate that in patients with schizophrenia

BDNF and TrkB are downregulated. Could decreased BDNF in some of the

studies be attributable to antipsychotic drugs? First, in one of the studies showing

a decrease of BDNF, any correlation between lifetime antipsychotic exposures

and BDNF levels was found (Weickert et al., 2003). Moreover, in the other one,

some patients were free of medication for more than 1 month at the time of death

and did not demonstrate significant higher expression of BDNF in the prefrontal

cortex than patient under treatment (Hashimoto et al., 2005). However and

interestingly, in the study by Takahashi et al. (2000) showing an increase of BDNF

in the cingulate cortex, patients were treated at the time of death with very low

doses of antipsychotics as reflected by an average equivalent chlorpromazine of

the sample of 72 mg/day.

Antipsychotic drugs’ eVects on BDNF expression in the brain of normal rats

and nonhuman primates have been investigated. Haloperidol, a first-generation

antipsychotic drug, given for more than 9 months in monkeys do not induce

significant changes in BDNF mRNA in the prefrontal cortex (Hashimoto et al.,

2005). Other studies, conducted in normal rats have found no change or de-

creased BDNF mRNA and protein in cortical regions after chronic exposure to

antipsychotic drugs (Angelucci et al., 2000; Dawson et al., 2001; Linden et al.,

2000; Lipska et al., 2001; Nibuya et al., 1995; Takahashi et al., 2000).

Dysfunction of glutamatergic neurotransmission has been proposed to

play an important role in the pathophysiology of schizophrenia (GoV and Coyle,

2001). In rats, glutamate hypofunction induced by the administration of MK-801

induces an increase of BDNF mRNA in the cortex which is circumvented

by clozapine or haloperidol pretreatment (Linden et al., 2000; SokoloV et al.,

2006).

At this time, the more conservative conclusion of postmortem studies on

BDNF expression in the prefrontal cortex is that there is discrepancy between

studies and that the role of treatment on the results is still under debate.
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V. Dopamine–BDNF Interactions

Since the 1960s, a crucial role for dopamine in schizophrenia and its treat-

ment was suspected in schizophrenia (Carlsson and Lindqvist, 1963). It has been

confirmed by imaging studies (Abi-Dargham and Laruelle, 2005; Laruelle, 2000,

2005). Some recent evidences link BDNF and dopamine neurotransmission.

A. BDNF SUPPORTS THE SURVIVAL AND THE DIFFERENTIATION OF

DOPAMINERGIC NEURONS

BDNF is expressed in the adult dopaminergic neurons of the midbrain

and destruction of dopaminergic cells by 6-hydroxydopamine result in a loss of

BDNF mRNA (Seroogy et al., 1994). In the same line of evidences, in disease with

a loss of dopaminergic neurons like Huntington disease and Parkinson disease

postmortem studies have shown a decrease of BDNF in the substancia nigra and

the striatum (Chauhan et al., 2001; Ferrer et al., 2000; Howells et al., 2000; Mogi

et al., 1999; Parain et al., 1999). Using neurons in culture, BDNF was found to

promote the survival of the dopaminergic neurons of the developing substancia

nigra (Hyman et al., 1991) and to elicit an increase in the depolarization-induced

release of dopamine (Feng et al., 1999). In mice lacking selectively the BDNF

gene in the midbrain, there is a significant but not complete reduction in non-

expressing calbindin and calcineurin dopaminergic neurons during development

(Baquet et al., 2005). However, this has not been confirmed in a report (Berton

et al., 2006). Moreover, BDNF protects dopaminergic neurons from the toxic

eVect of MPTP, 6-hydroxydopamine, oxidative stress, and hypoglycemic injury

(Hung and Lee, 1996; Levivier et al., 1995; Nakao et al., 1995; Petersen et al.,

2001; Shults et al., 1995). These functions are likely to complement and over-

lap with those of other neurotrophic factor, including glial cell line-derived

neurotrophic factor and bone morphogenetic proteins, which are also known to

enhance diVerentiation and survival of dopaminergic neurons (Brederleau et al.,

2002; Feng et al., 1999; Gratacos et al., 2001; Zuch et al., 2004).

B. BDNF IN THE GABA-CONTAINING LOCAL CIRCUIT NEURONS OF THE

PREFRONTAL CORTEX

Alteration in the circuitry of the dorsal prefrontal cortex appears to contrib-

ute to the working memory impairments in schizophrenia (Lewis and Lieberman,

2000), more particularly in the GABA-containing local circuit neurons of the
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prefrontal cortex (Volk and Lewis, 2002), which BDNF regulates the maturation

in the developing cortex (Huang et al., 1999). Several lines of evidences have

emerged from the Lewis’s group in Pittsburgh involving BDNF in the alteration

of GABA neurons in schizophrenia. These authors have shown in the postmor-

tem brain tissue of patients with schizophrenia that the decrease in BDNF and

TrkB mRNAwas correlated with the decrease in GAD67 mRNA, a marker of the

integrity of GABA neurons (Hashimoto et al., 2005). However, the presence of the

BDNF Met66 allele, a polymorphism which reduces the traYcking and secretion

of BDNF protein (Egan et al., 2003) did not contribute to the decreased level of

GAD67 mRNA expression of the same sample of brain tissue of patients with

schizophrenia (Hashimoto and Lewis, 2006).

C. FUNCTIONAL INTERPLAY BETWEEN BDNF AND DOPAMINE

The first line of evidences indicating a role of BDNF in modulating dopami-

nergic functions came from studies in rats infused with recombinant BDNF in

the substancia nigra. In these animals, an increase of locomotor activity and

dopamine agonists-induced rotational behavior is found suggesting that BDNF

increases dopamine function. This was also suggested by the fact that supranigral

infusion of BDNF elicits dopamine turnover in the striatum and increases the

electrical activity of dopaminergic neurons via an activation of the PI3K and

Ras-MEK pathways (Altar et al., 1992; Goggi et al., 2003; Shen et al., 1994).

Chronic exposure to drug of abuse elicits long-lasting changes in the ventral

tegmental area, a brain region involved in drug addiction (Koob, 1992). Rats

chronically treated with morphine have a reduction in their ventral tegmental

area of dopaminergic neurons that BDNF infusion prevents (Sklair-Tavron et al.,

1996). Chronic infusions of BDNF into the ventral tegmental area in the nucleus

accumbens result in increased locomotor activity and enhanced locomotor sensi-

tization to cocaine (Horger et al., 1999).

In mice experiencing repeated aggression, a local deletion of the BDNF gene

in the dopaminergic neurons of the ventral tegmental area does not permit the

development of social avoidance like it does in animals with a normal expression

of BDNF (Berton et al., 2006b).

Altogether, these results are consistent with the idea of BDNF as a modulator

of dopaminergic function.

D. BDNF CONTROLS THE EXPRESSION OF THE DOPAMINE D3 RECEPTOR

The DRD3 belongs to the dopamine D2-like receptors (SokoloV et al., 1990).

From the beginning, attention has been attracted to the restricted distribution of

the DRD3 in the brain, seemingly related to functions of dopamine associated
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with the limbic brain (Bouthenet et al., 1991). Hence, the hypothesis has been put

forward that the DRD3 receptor could be involved in the pathophysiology of

schizophrenia. Several other findings might implicate the DRD3 in the patho-

physiology of schizophrenia. For instance, antipsychotic drugs display aYnity at

recombinant dopamine D2 receptor and DRD3 in the same magnitude (SokoloV
et al., 1990). Moreover, in spite of controversy (Sabate et al., 1994), the meta-

analysis of the ser–gly polymorphism of the DRD3 have been found to be asso-

ciated with schizophrenia (Dubertret et al., 1998). However, the most direct

evidence of a role of the DRD3 in schizophrenia has come from a postmortem

study which, at this date, has never been refuted, neither replicated. DRD3 levels

have been found elevated in the brain of drug-free schizophrenic patients, but not

in patients under medication with antipsychotics at the time of death (Gurevich

et al., 1997). This suggests that increased DRD3 expression is a hallmark of the

disease and that antipsychotic medications normalize this receptor expression.

DRD3 overexpression in the etiology of schizophrenia raises the question of

mechanisms governing this receptor expression during development.

In adults, the expression of the DRD3 in medium-sized neurons of the

nucleus accumbens, but not in granule cells of the islands of Calleja, is highly

dependent on the dopaminergic innervation: ablation of the aVerent neurons by
unilateral 6-hydroxydopamine results in a dramatic decrease in DRD3 density in

the ipsilateral nucleus accumbens (Levesque et al., 1995). This paradoxical

change (the dopamine D2 receptor is upregulated under these circumstances)

was shown to depend on the lack of an anterogradely transported factor from

dopaminergic neurons, distinct from dopamine itself and its known peptide

cotransmitters, and which is released on dopamine neuron activation (Levesque

et al., 1995). Among the candidate factors for regulating DRD3 expression,

BDNF was particularly attractive, since it is expressed by dopamine neurons

(Seroogy et al., 1994). BDNF immunoreactivity is prominent in the shell of the

nucleus accumbens of normal rats (Conner et al., 1997), and its receptor, the

TrkB, colocalizes with the DRD3 (Guillin et al., 2001).

Several lines of evidences have lead to the conclusion that BDNF con-

trols DRD3 expression (Guillin et al., 2001). In mice with a BDNF-null mutation,

DRD3 binding and mRNA are low at postnatal days 9–14 and do not increase

at later stages as it does in their normal littermates. These results show that

BDNF is required for the normal development of DRD3 expression in the shell of

the nucleus accumbens. In unilaterally 6-hydroxydopamine-lesioned rats, repeat-

ed administration of levodopa, leading to extraneuronal dopamine formation,

triggers DRD3 overexpression, not only in the shell of the nucleus accum-

bens but also in the denervated striatum, a brain structure in which DRD3

expression is hardly detectable (Bordet et al., 1997). During levodopa treatment

of 6-hydroxydopamine-lesioned rats, infusion into the denervated striatum of a

selective BDNF antagonist impairs induction of both DRD3 mRNA and protein
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expression (Guillin et al., 2001). This overexpression of the DRD3 in the dener-

vated striatum triggers the development of behavioral sensitization to levodopa

(Bordet et al., 1997). Infusion of the selective TrkB antagonist dose dependently

inhibits behavioral sensitization, indicating that behavioral sensitization is trig-

gered by BDNF (Guillin et al., 2001). Striatal BDNF in fact originates mainly

from cortical neurons (Altar et al., 1997). In agreement, cortical ablation partially

impairs the induction of DRD3 overexpression in the striatum and behavioral

sensitization, indicating that both processes require the participation of corticos-

triatal neurons (Guillin et al., 2001). Levodopa also induces BDNF mRNA on the

frontal cortex in the 6-hydroydopamine-lesioned side, mainly in cortical layer V,

containing pyramidal cell bodies, and in layer VI, which sends projections to

various subcortical areas, notably striatal and accumbal areas. This eVect criti-
cally depends on activation of the dopamine D1/D5 receptors (Guillin et al.,

2001).

Altogether, these results demonstrate that BDNF triggers behavioral sensiti-

zation by controlling DRD3 expression and, more generally controls dopamine

tone in the limbic forebrain.

VI. Conclusions

Behavioral sensitization of the dopamine system might be involved in the

early stage of schizophrenia and more likely in the pathophysiology of positive

symptoms (Laruelle, 2005; Lewis and Lieberman, 2000). In schizophrenia,

DRD3 protein is elevated in nontreated patients. Therefore, BDNF should be

found elevated in cortical regions of nontreated patients with schizophrenia. As

discussed before, these data are not available at this time as all postmortem

studies were performed on brain of patients treated by antipsychotic at the time

of death. Moreover, the eVect of antipsychotic drugs on BDNF expression is still

controversial. Thus, the view that hypo- or hyperfunction of BDNF in the

prefrontal cortex participate to the emergence of symptoms of schizophrenia

could be supported (Hashimoto et al., 2005; SokoloV et al., 2006; Weickert et al.,

2003).

However, results show that subchronic blockade of glutamatergic transmission

induces an increase of BDNF in the frontal cortex and a striatal DRD3 over-

expression in mice, that is corrected by antipsychotic drugs (SokoloV et al., 2006).

In sensitized animals, DRD3 expression is under the control of prefrontal cortex

BDNF and this expression is under the control of the dopamine D1 receptor

stimulation (Guillin et al., 2001). Dopamine D1 expression have been found to

be elevated in the dorsolateral prefrontal cortex of patients with schizophrenia

and associated to working performance impairment (Abi-Dargham et al., 2002).
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Thus, we can hypothesized that, by an unknown neurodevelopmental process,

dopamineD1 function is enhanced in the dorsolateral prefrontal cortex, leading to

an increase of BDNF expression, that, in turns, elicits an overexpression of the

DRD3 in the striatum that participates to the expression of positive symptoms.

Antipsychotic drugs might decrease BDNF levels and, therefore, normalize

subcortical dopaminergic hyperfunction mediated by the DRD3.
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Schizophrenia is a devastating psychiatric disorder that aVects approximately

one percent of the population worldwide. We argue that the eVorts to decipher

the genetic causes of schizophrenia have reached another turning point and

describe evidence supporting some of the major recent genetic findings in the

field. In addition, we identify some general areas of caution in the interpretation

of these findings and addresses the promise this recently acquired knowledge

holds for the generation of reliable animal models, characterization of genetic
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interactions, dissection of the disease pathophysiology and development of novel,

mechanism-based treatments for the patients.

I. The Genetic Component of Schizophrenia

Schizophrenia is a severe psychiatric disorder with a lifetime prevalence of

�1% in most studied populations (Karayiorgou and Gogos, 1997). Schizophrenia

is characterized by so called ‘‘positive symptoms’’ including delusions and hallu-

cinations, ‘‘negative symptoms’’ including blunted emotions and social isolation, as

well as by cognitive deficits. Although cognitive impairment has always been

regarded as a hallmark feature of schizophrenia, only recently it has been recog-

nized as an enduring, core deficit, a strong indicator of specific genetic liability to

the disease and a primary target for pharmacotherapy. Individuals with schizo-

phrenia show varying degrees of deficiency in a diverse range of cognitive domains

such as working memory, short-term and episodic memory, attention, executive

functions, and learning (Bowie and Harvey, 2005; Goldman-Rakic, 1994; Green

et al., 2004).

Similar to many common, complex disorders, schizophrenia is a multifacto-

rial disorder characterized by the contribution of multiple risk genes, which could

act in conjunction with epigenetic and environmental processes (Karayiorgou

and Gogos, 1997). More than 20 genome-wide scans aiming to localize genes for

this disorder have been reported to date and two meta-analyses (Badner and

Gershon, 2002; Lewis et al., 2003) implicated under moderate stringency, �12

regions of the genome as likely to contain schizophrenia susceptibility genes (2p,

5q, 3p, 11q, 2q, 1q, 22q, 8p, 6p, 20p, 13q, and 14q). This is most likely to be an

underestimate because it is expected that many schizophrenia susceptibility genes

will be undetectable by traditional linkage studies. The ultimate validation of the

linkage results is gene identification, which in turn represents an important miles-

tone for understanding the disease pathophysiology. Gene identification has proven

to be an extraordinarily diYcult task, partly because no single gene is necessary or

suYcient to cause the disease but instead,many susceptibility genes with small eVects
act in combinations to increase the risk of illness. Phenotypic heterogeneity has also

contributed to the diYculties associated with genetic research in schizophrenia.

Phenotypic heterogeneity is to be expected due to the complexity of the brain, but

the majority of genetic studies by relying on a categorical binary diagnosis

(‘‘aVected’’ vs ‘‘unaVected’’) do not take into account the possible diVerences in
representation among diVerent samples of the various components of the illness.

Nevertheless, in the past 4 years, significant advances in gene discovery have

taken place driven by the completion of the sequencing of the human genome,

the increasingly available technology for high-throughput genomic analysis, and the

development of new analytical and bioinformatics tools. Several new susceptibility
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genes have been proposed, each supported by varying degrees of evidence.

Candidate genes have been identified, for the most part, through systematic

follow-up of linkage signals involving genotyping of relatively large numbers of

markers, including single nucleotide polymorphisms (SNPs) and linkage disequi-

librium (LD) assays or through multipronged candidate gene approaches involv-

ing analysis of expression patterns and biological functions. Far from being a

mere academic exercise, this newly acquired knowledge base provides a novel

framework for mechanism-based drug discovery eVorts. In some cases, suscepti-

bility genes could themselves provide new drug targets. Alternatively, the identi-

fication of these genes will lead to improved understanding of the basis of

schizophrenia pathogenesis and eventual detailed characterization of the aVected
molecular pathways.

Here, we discuss the available genetic and biological data behind these strong

candidate genes, the statistical support for these findings, and future directions of

the genetic research. In this context, we discuss the development of animal

models, the characterization of susceptibility gene interactions, the understanding

of the disease pathophysiology, and the development of mechanism-based

therapies.

II. Genes Identified Through Systematic Follow-Up of Linkage Signals

In this section, we discuss the genetic data for recently identified strong

positional candidate genes (in chronological order of appearance of the reports),

as well as their possible biological functions. The first report of a strong positional

candidate schizophrenia gene identified by a systematic fine-mapping approach

within a region implicated by linkage analysis was published in 2002 (Liu et al.,

2002a) followed in the same year by three additional reports describing new

susceptibility genes identified through similar approaches (Chumakov et al., 2002;

Stefansson et al., 2002; Straub et al., 2002). Additional genes have been reported

based on systematic follow-up analysis of linkage peaks (Brzustowicz et al., 2004;

Duan et al., 2004; Hennah et al., 2003; Mukai et al., 2004; Petryshen et al., 2005a;

Pimm et al., 2005; Table I).

A. PROLINE DEHYDROGENASE

The gene is located on chromosome 22q11, a region implicated by some

linkage studies (Badner and Gershon, 2002; Lewis et al., 2003) and also frequently

deleted in patients with schizophrenia (Karayiorgou et al., 1995). Several studies

have now established conclusively that the risk of schizophrenia for a patient with

a 22q11 microdeletion is �25–31 times the general population risk of 1%

(Murphy et al., 1999; Pulver et al., 1994) and that the rate of 22q11 microdeletions
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TABLE I

SCHIZOPHRENIA CANDIDATE GENES: CHROMOSOMAL LOCATIONS AND POTENTIAL FUNCTION

Gene symbol Locus Function References

PRODH 22q11 L-Proline metabolism; influence

on glutamatergic transmission,

mitochondrial function

Liu et al. (2002a)

DTNBP1 6p22 Member of DPC and biogenesis of

lysosomal related organelle com-

plex; potential presynaptic eVects

on glutamate release

Straub et al. (2002)

NRG1 8p12 Broad involvement in neuronal

function and survival

Stefansson et al. (2002)

G72 13q34 Potential activation of D-amino acid

oxidase and indirect eVects on

glutamatergic signaling

Chumakov et al. (2002)

DISC1 1q42 Multifunctional; possible involve-

ment in cell migration and

phosphodiesterase signaling

Millar et al. (2000),

Hennah et al. (2003)

CAPON 1q22 Potential regulator of NMDA

receptor-coupled nitric oxide

signaling

Brzustowicz et al. (2004)

ZDHHC8 22q11 Palmitoylation of PSD-95 and

other substrates; implications for

synaptic assembly and

function

Liu et al. (2002b),

Mukai et al. (2004)

TAAR6 6q23 G-protein–coupled receptor for

trace amines

Duan et al. (2004)

EPN4 5q33 Potential role in reuptake and

storage of neurotransmitters

Pimm et al. (2005)

GABA(A) receptors 5q34 GABAergic transmission Petryshen et al. (2005a)

COMT 22q11 Regulation of extracellular dopa-

mine levels in prefrontal cortex

Egan et al. (2001),

Shifman et al. (2002),

Paterlini et al. (2005)

RGS4 1q23 Regulator of signal transduction

via dopamine, metabotropic

glutamate, and muscarinic

receptors

Chowdari et al. (2002)

PPP3CC 8p21 Subunit-specific function unknown;

potential involvement in synaptic

plasticity and D1 receptor

signaling

Gerber et al. (2003)

AKT1 14q32 Multifunctional; possible involve-

ment in D2 and GABAB receptor

signaling

Emamian et al. (2004)
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in schizophrenia, although relatively low, is �12–80 times the estimated general

population rate (Karayiorgou et al., 1995). Individual genes from this locus

have been examined in systematic fine-mapping eVorts (Karayiorgou and

Gogos, 2004). LD analysis using 72 SNPs in family samples identified an over-

transmission of a haplotypic variant located at the 30 end of the proline dehydro-

genase (PRODH) gene (Liu et al., 2002a,b). This finding was replicated in

3 independent family samples, including a very large collection of 528 families

from China (Li et al., 2004a) and 274 families of Ashkenazi Jewish origin (Fallin

et al., 2005). One negative family study has also been reported (Williams et al.,

2003a). In addition, 30 end variants of the gene were also identified as a risk factor

for development of psychotic symptoms during adolescence in children with

22q11 microdeletions (Gothelf et al., 2005). The implicated variants are consis-

tently located at the 30 end of the gene, but their functional consequences are still

unknown. However, the Liu et al. (2002a) study identified additional rare variants

of the PRODH gene, which are present either exclusively or in higher frequencies

in schizophrenic patients, are generated through gene conversion from a nearby

pseudogene (Liu et al., 2002a) and aVect highly conserved amino acids leading to

drastic reductions in enzymatic activity (Bender et al., 2005). The same variants

were described in schizophrenic patients in an independent study, which also

identified a small deletion encompassing the PRODH gene (and its neighboring

gene DGCR6) in a schizophrenic patient ( Jacquet et al., 2002). PRODH encodes

an enzyme that metabolizes L-proline, a putative neuromodulatory amino acid

that could directly influence glutamatergic transmission, which is believed to

play a central role in the pathophysiology of schizophrenia (Paterlini et al.,

2005). A mutation in the mouse orthologue of the human PRODH gene in the

Pro/Re hyperprolinemic mouse strain has been described (Gogos et al., 1999).

These mice demonstrate an increased neurotransmitter release and abnormal

plasticity at glutamatergic synapses, as well as distinct abnormalities in dopamine

turnover and signaling in the frontal cortex (Paterlini et al., 2005) reminiscent of

schizophrenia in humans.

B. DYSTROBREVIN-BINDING PROTEIN 1

Fine-mapping eVorts undertaken as a follow-up to evidence for linkage on

chromosome 6p24–22 in a sample of Irish families, led to identification of

dystrobrevin-binding protein 1 (DTNBP1) gene (dysbindin; Straub et al., 2002)

as a schizophrenia candidate gene. Several replication studies have been reported

but most replication samples used (N ¼ 9) were case-control samples (Funke et al.,

2004; Morris et al., 2003a; Numakawa et al., 2004; Van Den Bogaert et al., 2003;

Williams et al., 2004). Replication of this association has also been attempted in

seven family samples, with replications observed in five of them (Fallin et al., 2005;
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Hall et al., 2004; Kirov et al., 2004; Schwab et al., 2003; Tang et al., 2003). In the

positive studies, there are inconsistencies among the implicated alleles or haplo-

types. These inconsistencies may be a product of population stratification or

multiple testing. Alternatively, they could be explained by presence of distinct

variations aVecting diVerent functional elements within the gene that have

emerged independently on a more recent ancestral background. In addition, as

this locus has not been extensively analyzed outside the confines of the DTNBP1

gene, the possibility of a neighboring gene as a sole or partial source of the as-

sociation signal cannot be excluded. Initial expression and functional studies

provide some additional support for a role of DTNBP1 in schizophrenia.

DTNBP1 has a widespread distribution in the brain, including expression in

pyramidal neurons in the hippocampus and dorsal lateral prefrontal cortex

(DLPFC). DTNBP1 expression appears to be decreased in schizophrenia in both

DLPFC and excitatory pathways of hippocampus (Talbot et al., 2004; Weickert

et al., 2004). Interestingly, a substantial fraction of DTNBP1 is presynaptically

localized, and preliminary in vitro evidence suggests that knockdown of endoge-

nous dysbindin protein results in the reduction of glutamate release, suggesting

that dysbindin might influence exocytotic glutamate release (Numakawa et al.,

2004). DTNBP1 is a member of the biogenesis of lysosome-related organelles

complex (BLOC; Li et al., 2003), as well as the dystrophin protein complex (DPC;

Benson et al., 2001).

C. NEUREGULIN 1

A broad region on chromosome 8p12-21 has been implicated in schizophre-

nia by multiple linkage studies, including a study of 33 extended Icelandic

families. Fine mapping in the same set of families detected an association between

schizophrenia and several haplotypes at the neuregulin 1 (NRG1) locus. A core

haplotype at the 50 end of the gene comprising several markers within a 290-kb

block of LD showed highly significant association with schizophrenia (Stefansson

et al., 2002). Several replication studies have been reported. Eight of the replica-

tion samples used were case-control samples (Corvin et al., 2004; Iwata et al.,

2004; Li et al., 2004b; Petryshen et al., 2005b; Stefansson et al., 2003; Tang

et al., 2004; Williams et al., 2003b; Zhao et al., 2004) and eight family samples.

In the family samples, less than half show some evidence for association, but often

with haplotypes other than the one originally described (Duan et al., 2005a; Fallin

et al., 2005; Hall et al., 2004; Li et al., 2004b; Petryshen et al., 2005b; Thiselton

et al., 2004; Yang et al., 2003; Zhao et al., 2004). Dramatic diVerences in the

frequency of haplotypes reported between diVerent samples (ranging from 1% to

10%; Li et al., 2004b; Zhao et al., 2004) could indicate either substantial hetero-

geneity in the LD structure across the NRG1 locus or presence of multiple risk
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alleles. In the absence of any functional significance for any of the implicated

haplotypes, it is diYcult to interpret further the genetic data that is published at

the time of this writing. The NRG1 gene encodes a well-characterized protein

involved in a wide variety of neuronal functions, ranging from neuronal survival

to myelination and synaptic plasticity (Corfas et al., 2004).

D. G72

A strong and consistent linkage signal for both schizophrenia and bipolar

disorder has been identified on chromosome 13q32–34 (Blouin et al., 1998;

Detera-Wadleigh et al., 1999) and has prompted fine-mapping eVorts. Significant
association with schizophrenia was described for several SNPs and haplotypes at

the G72 locus in a French-Canadian case-control sample. The association for two

SNPs was replicated in a Russian case-control cohort (Chumakov et al., 2002).

Consistent with the linkage studies results, an association between variants at the

G72 locus and bipolar disorder has also been described (Hattori et al., 2003). G72

association with schizophrenia has been observed in several additional samples

including case-control (Korostishevsky et al., 2004; Schumacher et al., 2004;

Wang et al., 2004) and family-based samples (Addington et al., 2004; Zou et al.,

2005) with evidence for allelic heterogeneity. Negative studies have also been

reported (Mulle et al., 2005). Expression and functional studies suggested a poten-

tial interaction of G72 with D-amino acid oxidase that modulates its enzymatic

activity and thus could indirectly aVect glutamatergic signaling (Chumakov et al.,

2002; Mothet et al., 2000). However, this interaction remains to be demonstrated

in vivo.

E. DISRUPTED IN SCHIZOPHRENIA 1

Disrupted in schizophrenia 1 (DISC1) is one of two genes isolated from a

chromosome 1q42 translocation breakpoint previously shown to segregate with

psychopathology in a large Scottish family. The other gene is DISC2 and is a

noncoding, presumably regulatory RNA (Millar et al., 2000). DISC1 was originally

described 5 years ago, but interest in it was renewed only recently when large-scale

linkage (Ekelund et al., 2001, 2004) and follow-up systematic association studies in

Finnish families identified DISC1 as a positional candidate from the 1q42 locus

(Hennah et al., 2003). DISC1 association with schizophrenia has been observed in

some additional samples with evidence for allelic heterogeneity, but negative

studies have also been reported (Fallin et al., 2005;Hennah et al., 2003; Hodgkinson

et al., 2004). DISC1 association with schizophrenia-related endophenotypes has

been also reported. In one preliminary imaging study, variation in the DISC1 gene
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was associated with altered hippocampal structure and function in healthy sub-

jects (Callicott et al., 2005). An independent study implicated DISC1 variation in

visual working memory performance (Hennah et al., 2005). A family aZicted with

schizophrenia and schizoaVective disorder was shown to segregate a rare frame-

shift variant of the gene (Sachs et al., 2005). DISC1 is a complex gene with poorly

understood involvement in development and synaptic plasticity. It is associated

with numerous cytoskeletal proteins, and it could be involved in centrosomal

and microtubule function, cell migration, neurite outgrowth, membrane traYck-

ing of receptors, mitochondrial function, and possibly phosphodiesterase signaling

(Morris et al., 2003b).

F. CARBOXYL-TERMINAL PDZ LIGAND OF NEURONAL NITRIC OXIDE SYNTHASE

Brzustowicz et al. (2000) have previously reported evidence for linkage at

1q22. Fine mapping using 14 microsatellite markers and 15 SNPs from a

subregion of the linkage locus (Brzustowicz et al., 2004) produced nominally

significant evidence of LD between schizophrenia and a subset of markers located

within the genomic region of carboxyl-terminal PDZ ligand of neuronal nitric

oxide synthase (CAPON ). Abnormal expression pattern of this gene was observed

in brains from individuals with schizophrenia (Xu et al., 2005) making it a prime

positional candidate from the schizophrenia susceptibility locus on 1q22.

Two case-control replication studies (one positive and one negative) have been

reported (Puri et al., 2005; Zheng et al., 2005). CAPON is involved in NMDA

receptor-coupled nitric oxide signaling ( JaVrey et al., 1998).

G. ZDHHC8

Involvement of this gene was identified in the same LD screen of the 22q11

locus that led to the discovery of the PRODH-schizophrenia association (Liu et al.,

2002a,b). It was shown that one of the ZDHHC8 risk alleles (at SNP rs175174),

located in intron 4, aVects the ratio of an intron 4-containing unspliced form (that

encodes a putative truncated form of the protein) over the fully spliced active

form (Mukai et al., 2004). The presence of the risk allele rs175174-A results in the

production of relatively higher levels (~25%) of the unspliced inactive form

(Mukai et al., 2004). Other variants of the gene (aVecting distinct aspects of its

complex splicing or its expression level) might modulate the disease risk in other

nondeleted patient samples. One positive and one negative family-based study

of nondeleted patients have been reported so far (Chen et al., 2004a; Glaser et al.,

2005). The general involvement of this gene in schizophrenia awaits analysis of

additional family samples, but the eVect of the gene is predicted to be much

stronger in individuals with 22q11 deletions and schizophrenia, where a 50%
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(or ~65% when the nondeleted allele carries the risk SNP rs175174 variant)

decrease in ZDHHC8 activity levels is predicted. ZDHHC8 is predicted to

encode a transmembrane palmitoyltransferase that modifies PSD-95 among

other targets and could play an important role in excitatory synaptic transmission

(el-Husseini and Bredt, 2002).

H. TRACE AMINE RECEPTOR 6

A broad area on chromosome 6q (6q13-26) has been implicated in schizophre-

nia in linkage studies using European ancestry and African-American

schizophrenia pedigrees (Levinson et al., 2000). Two-stage SNP-based fine-mapping

eVorts focusing on band q23.2 identified trace amine receptor 6 (TAAR6 ) as a

prime positional candidate (Duan et al., 2004) for the schizophrenia susceptibility

locus on 6q23.2. Two negative replication studies have been reported (Duan et al.,

2005b; Ikeda et al., 2005). An independent study implicated the trace amine

receptor genes at 6q23.2 in susceptibility to bipolar disorder (Abou Jamra et al.,

2005). TAAR6 is a GPCR widely expressed in the brain (Borowsky et al., 2001).

I. EPSIN 4

Chromosome 5q33 is a region that has previously shown strong evidence of

linkage to schizophrenia in four independent linkage studies. Four adjacent

markers (and associated haplotypes) at the 50 end of the Epsin 4 (EPN4 ) gene,

which is located in this region, showed significant evidence of LD with schizo-

phrenia in a case-control fine-mapping study (Pimm et al., 2005). The Epsin 4

gene encodes the clathrin-associated protein enthoprotin, which has a role in

transport and stability of neurotransmitter vesicles at the synapses and within

neurons. No replication studies (especially family based) have been reported yet.

J. (GABA)A RECEPTOR SUBUNIT GENE CLUSTER

Chromosome 5q31–35 was implicated in Portuguese schizophrenia families

(Sklar et al., 2004) and was supported by subsequent meta-analysis. A group of

�-aminobutyric acid (GABA)A receptor subunit genes (GABRA1, GABRA6,

GABRB2, GABRG2, andGABRP ) that map within this linkage peak were examined

in Portuguese patients, and associations with SNPs and haplotypes in GABRA1,

GABRP, and GABRA6 were detected (Petryshen et al., 2005a). The GABRA1 and

GABRP findings were replicated in an independent German family-based sample

(Petryshen et al., 2005a). These genes are plausible candidates based on prior

evidence for GABA system involvement in schizophrenia (Lewis et al., 2005).
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III. Other Candidate Genes

The candidacy of the genes described in this section is based on convergent

genetic and biological evidence rather than on positional cloning. Interestingly,

many of these genes are located in the general vicinity of linkage signals. Although

far from proven, the recurrent observation of clustering of candidate susceptibility

genes could indicate that more than one gene could contribute to at least some of

the linkage signals in psychiatric disorders.

A. CATECHOL-O-METHYLTRANSFERASE

The gene is located in the 22q11 region between the PRODH and ZDHHC8

genes. In addition to being a positional candidate gene, catechol-O-methyltrans-

ferase (COMT ) is also an attractive functional candidate gene since it is involved

in the breakdown of dopamine. One variant in particular, in codon 158 that

aVects enzymatic activity depending on presence of Val (high activity) or Met (low

activity), has been examined extensively in studies testing directly for association

with schizophrenia. It has been proposed that the high-activity Val allele in-

creases the risk for schizophrenia but the genetic association results are equivocal

(Fan et al., 2005; Glatt et al., 2003; Lohmueller et al., 2003; Munafo et al., 2005;

Shifman et al., 2002; Tsai et al., 2006; Williams et al., 2005). The same allele was

shown in some studies to impair executive function, which is aVected in

schizophrenic patients (Egan et al., 2001; Ho et al., 2005). Studies in animal

models, however, suggested that low activity of this enzyme could be a risk factor

for schizophrenia by failing to buVer the eVect of other primary mutations that

aVect dopamine turnover and signaling in the cortex (Paterlini et al., 2005). This

prediction was supported by the results of a longitudinal follow-up study of

children with 22q11 microdeletions, which revealed that the low-activity form

of the enzyme (Met158) is a risk factor for decline in prefrontal cortical volume

and cognition, as well as for the consequent development of psychotic symptoms

during adolescence, in these children (Gothelf et al., 2005). Therefore, the

contribution of COMT to schizophrenia, in general, is likely to be complex.

B. REGULATOR OF G-PROTEIN SIGNALING 4

The gene maps to 1q21–22, 0.7 Mb from CAPON (see Section II). Regulator

of G-protein signaling 4 (RGS4) was initially identified as the only transcript (out

of 7800 sampled by Mirnics et al., 2000) consistently reduced in the DLPFC of

individuals with schizophrenia. Subsequently, Chowdari et al. (2002) genotyped

13 SNPs across a 300-kb segment spanning the gene in several independent
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datasets and found weak evidence for association with schizophrenia in each of

the samples within a haplotype block stretching from intron 1 to several kb

upstream of the transcription start site. However, the pattern of allelic association

was not consistent among samples. Independent replication eVorts have been

reported including both positive and negative studies (Chen et al., 2004b; Fallin

et al., 2005; Sobell et al., 2005; Zhang et al., 2005). RGS4 is one of 19 human RGS

transcripts and is abundant in the cerebral cortex (Larminie et al., 2004). RGS4

encodes for a GTPase activator, which desensitizes Gi/Go and Gq, thus nega-

tively modulating G-protein-mediated signaling via dopamine, metabotropic

glutamate, and muscarinic receptors (Ross and Wilkie, 2000).

C. CALCINEURIN GAMMA CATALYTIC SUBUNIT

PPP3CC which encodes the calcineurin gamma catalytic subunit is located at

8p21.3, 10 Mb from NRG1, but adjacent to previously described linkage signals

(Gerber et al., 2003). Forebrain-specific calcineurin knockout mice were reported

to have a spectrum of behavioral abnormalities related to altered behaviors

observed in schizophrenia patients (Miyakawa et al., 2003) supporting the proposal

that alterations in calcineurin signaling contribute to schizophrenia pathogenesis.

In further support of this proposal, PPP3CC was found to be downregulated in

the hippocampus of individuals with schizophrenia (Eastwood, 2005). The genetic

association was not replicated, however, in a sample of Ashkenazi Jewish

nuclear families (Fallin et al., 2005). Calcineurin is a multifunctional calcium-

dependent serine/threonine phosphatase, known to be centrally involved in many

aspects of synaptic plasticity. It has particular roles in glutamate and dopamine

signaling and their interactions, including regulation of DARPP32, a molecular

node of convergence between dopamine receptor 1 andNMDA receptor signaling

pathways (Miyakawa et al., 2003; Winder and Sweatt, 2001).

D. AKT1

AKT-GSK3beta signaling is a target of lithium and as such has been im-

plicated in the pathogenesis of mood disorders. Evidence was provided that this

signaling pathway also has a role in schizophrenia (Emamian et al., 2004),

including convergent evidence for a decrease in AKT1 protein levels and levels

of substrate phosphorylation in the peripheral lymphocytes and brains of indivi-

duals with schizophrenia; a significant association between schizophrenia and an

AKT1 haplotype associated with lower AKT1 protein levels; and a greater

sensitivity to the sensorimotor gating-disruptive eVect of amphetamine, conferred

by AKT1 deficiency. The genetic association has been confirmed thus far in two
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independent populations, namely in a combined sample of ~1000 cases and 1000

controls from Japan (Ikeda et al., 2004; Ohtsuki et al., 2004) and in a sample of

European sib-pair families (Schwab et al., 2005). Dopamine plays an important

role in the etiology of schizophrenia, and despite claims that most behavioral

actions of DA are associated with the modulation of adenylate cyclase and PKA

activity (Greengard, 2001), investigations have uncovered that stimulation of D2

class receptors also results in a adenosine 30,50-monophosphate (cAMP)-indepen-

dent dephosphorylation/inactivation of Akt (Beaulieu et al., 2004) associated with

the expression of DA-dependent behaviors (Beaulieu et al., 2004; Emamian et al.,

2004). These novel results suggest a model in which both cAMP-dependent and

cAMP-independent events play important and perhaps cooperative functions

mediate schizophrenia-related DA actions. Consistent with this model, adminis-

tration of haloperidol or the selective D2 class receptor antagonist raclopride has

been shown to prevent the regulation of Akt by DA or enhance Akt phosphoryla-

tion in animal models (Beaulieu et al., 2004; Emamian et al., 2004) and thus, in

principle, could compensate for an impaired function of this signaling pathway

in schizophrenia.Moreover, two other drugs used in themanagement of psychosis,

lithium, and clozapine also act as enhancers of Akt signaling in vivo (Beaulieu

et al., 2004) or in vitro (Chalecka-Franaszek and Chuang, 1999; Kang et al., 2004).

Akt signaling has also been implicated in GABAergic transmission (Wang et al.,

2003) and outside the CNS has been implicated in the regulation of multiple

biological processes ranging from glycogenesis to embryonic development,

apoptosis, and cell proliferation (Scheid and Woodgett, 2001).

IV. Areas of Caution in the Interpretation and Generalization of Genetic Findings

A combination of criteria that include the degree of statistical significance, the

reproducibility of the associations in independent samples, the identification of

independent rare risk alleles, and the consistent findings from animal model

studies and endophenotype-based studies in humans need to be considered in

assessing the degree of confidence assigned to each of the findings outlined in

the sections above. On the basis of these criteria, support for at least some of the

findings described above (such as PRODH, DTNBP1, NRG1, G72, DISC1, or

COMT ) appears to be quite strong. However, it should be emphasized that, even

for the stronger findings, it is too early to draw firm conclusions about their

generalization among diVerent samples and populations primarily due to uncer-

tainties pertaining to the extent of coverage of the implicated loci, consistency of

the risk allele or risk haplotype across studies, the structure of the samples used in

the original and replication studies, publication bias against negative reports, and

supporting biological data. Because of these issues, claims of ‘‘replication’’ should
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be taken with caution and the reader is encouraged to undertake a careful

analysis of the properties of the employed samples and the methods used in

order to determine the validity of such claims.

What are the general areas of caution in the interpretation of these findings?

In general, the statistical burden of proof is lower for genes identified through

systematic follow-up of linkage signals compared to genes picked in essentially

random fashion irrespective of their location relative to linkage signals (this is

discussed in detail in Freimer and Sabatti, 2004). Another important issue of

concern regards the structure of the tested replication samples.

It is becoming increasingly clear that unreliable results may be obtained when

allele frequencies diVer notably among subpopulations not represented equally

between cases and controls (Campbell et al., 2005). Therefore, the possibility that

original or replication studies using case-control samples are false positives (or

negatives) is a major source of concern. This issue is relevant to all common,

complex disorders, but it is likely to be more pronounced in genetic studies of

psychiatric disorders, which are confounded by a larger degree of phenotypic

heterogeneity. Even more alarmingly, several of the original or ‘‘replication’’

samples have been used repeatedly in genetic association studies making the

issue of multiple testing corrections highly relevant. These are not merely theo-

retical considerations as they can lead to striking inconsistencies among variant

alleles and haplotypes implicated in various replication studies (inconsistencies

are sometimes observed even in more reliable family-based samples and can be

explained in some instances by presence of distinct variations aVecting diVerent
functional elements within the gene that have emerged independently on a more

recent ancestral background). Publication bias almost certainly aVects the level of
confidence ascribed to any given susceptibility gene, primarily because negative

studies are more likely to accumulate with considerable delay or not at all

(negative studies are less likely to be submitted for publication and when they

are submitted they are less likely to be published in the same journals where the

original discovery was reported).

V. Future Directions of the Genetic Research: Advancing Our Understanding of How the
Specific Genetic Factors Contribute Biologically to the Disease Process

The recent gene discovery studies promise to provide researchers with im-

portant new clues regarding the genetic causes of schizophrenia. As additional

genes are identified through linkage or genome-wide association studies (which

are now starting to be implemented) a central goal of future research will be to

understand the functional implications and interactions of the susceptibility genes

and their variants in the context of schizophrenia.
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In the absence of well-defined and fully penetrant mutations, similar to the

ones found in Mendelian disorders, it is important to balance human genetic and

hard biological evidence against the need for timely identification of targets and

improvements in therapy. Genetic studies of endophenotypes (Egan et al., 2001)

(provided they are designed to avoid all the pitfalls described above, which are

associated with genetic studies of the clinical syndrome) and most importantly

hard biological data from animal model studies promises to advance our under-

standing of the disease pathophysiology in the next few years.

A. ANIMAL MODELS

Identification of susceptibility genes will permit incisive studies to illuminate

the physiological and biochemical etiology of the disease by examining the gene

products in the context of a model organism and their impact on the develop-

ment of the disorder. Such studies could also provide a critical resource for testing

new mechanism-based candidate therapies. It remains a challenge, however, to

define the optimal means to harness such model organisms in investigative strate-

gies designed to understand and manipulate candidate factors predisposing to

schizophrenia, a uniquely human disorder. For example, generation of bona fide

mouse models for most psychiatric disorders is highly unlikely due to constraints

imposed by the complex polygenic nature of human psychiatric disorders, by the

magnitude and pattern of change during hominid brain evolution and by uncer-

tainty regarding the clinical features of the human syndromes. On the other

hand, mouse models of ‘‘susceptibility genes’’ identified through forward genetic

studies in humans hold tremendous promise in understanding the function of the

genes in the context of simple cellular pathways or even at the level of simple

neural circuits and behavior.

Even in this context, there are several important factors that need to be

considered in generating such models and in designing and interpreting their

analysis. Possibly the most important consideration concerns the nature of the

susceptibility allele. For example, it is critical to know whether the risk allele

constitutes a hypomorph or a gain of function to predict whether a mouse

knockout allele can model it accurately. A related consideration concerns poten-

tial broad expression and pleiotropic eVects of particular susceptibility genes.

Several of the strong candidate genes (i.e., NRG1) appear to participate in virtually

all aspects of brain development, maturation, and function and modulate signal-

ing through a large number of neurotransmitter receptors (Corfas et al., 2004).

Given this complexity, when modeling such genes using, for example, mouse

knockout approaches, one must consider carefully which of a large number of

alternative phenotypes might provide a critical link between the genetic risk

variant and susceptibility to schizophrenia. Therefore, one very important goal
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of human genetic research will be: (1) to define as accurately as possible the risk

alleles or haplotypes and (2) to decipher the functional implications of the

risk alleles or haplotypes (Pastinen and Hudson, 2004) in order to model them

in mice as closely as possible. Given our present limited understanding of the

functional impact of human genetic variation, accurate mouse models of risk

alleles have been reported for only a small number of schizophrenia susceptibility

genes (Huotari et al., 2002; Paterlini et al., 2005; Paylor et al., 2001). Provided that

reliable mouse models are available, mechanistic insights into the mode of contri-

bution of these genes, as well as their interactions can be obtained through a

heuristic progression starting from the molecular level to the cellular and synaptic

level to the systems level and culminating at the behavioral level.

B. GENETIC INTERACTIONS

The genetic complexity of common psychiatric disorders has been repeatedly

inferred from the pattern of inheritance and the inability of the research commu-

nity to identify consistent linkage signals. It is believed that genetic interactions

among susceptibility genes (especially epistasis) lie at the core of this complexity.

Generally speaking, epistasis is a phenomenon whereby the eVects of a given gene

on a biological trait are masked or enhanced by one or more other genes. It has

been speculated that this type of genetic buVering leads to phenotypes that are

stable in the presence of mutations (Moore, 2005). It has also been argued that for

a phenotype to be buVered against the eVects of mutations, it must have an

underlying genetic architecture that is composed of networks of genes that are

redundant and robust (Moore, 2005). As a result, substantial eVects on the

phenotype are observed only when there are multiple mutational hits to the gene

network.

The biological basis of these epistatic interactions remains elusive in psy-

chiatric disorders, but two studies provided some important relevant insights

(Millar et al., 2005; Paterlini et al., 2005). One study, using animal models,

demonstrated a clear epistatic interaction between the prodh and comt genes at

the level of transcription and behavior that is likely to represent a comt-modulated

homeostatic response to abnormal dopaminergic signaling in the frontal cortex

that emerges as a result of prodh deficiency (Paterlini et al., 2005). This is an

intriguing finding, because dopaminergic dysregulation in schizophrenia is well

established, based primarily on the therapeutic eVect of dopamine receptor

antagonists (Seeman, 1987). Moreover, based on clinical and preclinical observa-

tions, it has been suggested that this dopaminergic dysregulation emerges as a

secondary result of other primary deficits, including impaired glutamate transmis-

sion. In any case, it is conceivable that similar patterns of genetic interactions that

involve impaired synaptic function and impaired homeostasis or compensation
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(genomic buVering) might also account for the epistatic component of the genetic

risk of psychiatric disorders in general.

A second study used the two-hybrid system to identify a molecular interaction

between the DISC1 protein and phosphodiesterase 4B (PDE4B; Millar et al.,

2005). Although the gene encoding for PDE4B is not included in the list of

strong candidate genes outlined above, the authors showed it is disrupted by a

balanced translocation in a subject diagnosed with schizophrenia and a relative

with chronic psychiatric illness. The PDEs inactivate cAMP, a second messenger

implicated in learning, memory, and mood. It was shown that DISC1 interacts

with the UCR2 domain of PDE4B and that elevation of cellular cAMP leads to

dissociation of PDE4B from DISC1 and an increase in PDE4B activity.

The authors proposed a genetic interaction model whereby DISC1 sequesters

PDE4B in resting cells and releases it in an activated state in response to elevated

cAMP.

Methods of analysis designed to probe epistasis are clearly of growing impor-

tance in the genetic dissection of complex disorders and currently a variety of

methods exist to detect or control for the presence of epistasis. These methods are

limited by the need for large sample sizes that ensure adequate power to detect

gene interactions. Moreover, direct biological inference from the results of

statistical tests is very diYcult because statistical interaction does not necessarily

imply interaction at the biological level (Thompson, 1991). In all, the degree to

which statistical modeling can provide insights into the underlying disease me-

chanisms is likely to be limited, and might require prior knowledge of the

underlying etiology. The question of true biological interaction remains of ex-

treme importance in the field of complex psychiatric genetics, but might ulti-

mately be better answered primarily via a combination of molecular and animal

model-based approaches.

C. UNDERSTANDING DISEASE PATHOPHYSIOLOGY

There are two major pharmacological hypotheses regarding the patho-

physiology of schizophrenia—the dopaminergic and glutamatergic hypotheses.

The dopaminergic hypothesis is based primarily on the observation that all drugs

with eYcacy in treating symptoms of schizophrenia share the property of dopa-

mine D2 receptor antagonism and also on the fact that indirect dopaminergic

agonists, such as cocaine and amphetamine, have psychotomimetic properties

(Seeman, 1987). The glutamatergic hypothesis arose from the finding that phen-

cyclidine (PCP), a potent psychotomimetic drug, is an antagonist of the NMDA

receptor, and posits that a major underlying cause of schizophrenia is abnormal

glutamatergic transmission, particularly in the prefrontal cortex, limbic areas,

and striatum (Coyle, 1996). Since the glutamatergic and dopaminergic systems
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are known to have complex interactions, the two hypotheses are not incompati-

ble, and it is likely that primary changes in one system would lead to associated

alterations in the other.

Although eVorts for synthesis of the initial genetic findings in the context of

specific neurotransmitter systems have been reported (Moghaddam, 2003), it

might be premature at this point to claim that the existing genetic data support

the critical involvement of one neurotransmitter system over another. The genes

outlined in this review article are involved in several neurotransmitter systems.

For some of them (such as PRODH, G72, DTNBP1, NRG1, ZDHHC8, CAPON ),

there is variable degree of experimental evidence that they are involved in

excitatory glutamatergic pathways. For other genes, there is clear evidence of

involvement in dopamine (COMT, AKT1), GABA (5q GABA receptor cluster,

AKT1), or trace amine signaling (TAAR6 ). However, even for genes that primarily

act via disruption of excitatory synaptic function, the final eVect could be

mediated by abnormal dopamine signaling (Paterlini et al., 2005; see previous

paragraph). Finally, many of the genes (such as NRG1, DISC1, PPP3CC, RGS4,

AKT1) appear to have pleiotropic eVects that are not restricted to a particular

type of synaptic transmission and involve several aspects of neuronal biology.

While it is too early to determine from the existing genetic evidence how

neurotransmitter systems might be primarily aVected in the disease, identification

of additional genes and further functional studies will help elucidate this issue.

However, it is equally likely that the final cumulative eVect of the risk variants will
emerge from, and be determined by, the pattern of expression, as well as the

pattern of interaction among these genes, and it could be restricted to specific

brain regions, specific cell types, or both, rather than specific neurotransmitter

systems. This regional or cellular selectivity could underlie the diVerences and
commonalities among common psychiatric disorders, as well as their distinction

from other common and serious CNS conditions, such as mental retardation, or

epilepsy that employ common neurotransmitter systems.

D. MECHANISM-BASED THERAPIES

It is common place to state that understanding of the function and the

interactions among individual susceptibility elements could eventually lead to

design of highly eVective targeted therapies for patients with specific genetic

predisposition with fewer side eVects and more positive long-term disease out-

comes. However, optimism should perhaps be tempered by experience gained

from study of simple genetic conditions where knowledge of the genes and protein

alterations is often available, and yet it has proven highly challenging to translate

this detailed knowledge into creation of therapies. It is conceivable that despite

their more complex etiology, multifactorial disorders like schizophrenia may be
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more amenable to mechanism-based therapeutic intervention. So far, it appears

that genetic alterations contributing to schizophrenia consist largely of common

but relatively subtle variations presumably aVecting transcript expression or

processing and in some cases protein function. The disease risk associated with

such variations is usually very low, but because the risk alleles are so common, a

low disease risk corresponds to a large population attributable risk (which means

that if the population were monomorphic for the nonrisk allele, the prevalence of

the disease would be considerably lower). Directed therapies, therefore, might

only need to provide relatively modest modulation of appropriate molecular

targets to reach an eVective threshold in a large fraction of patients, in contrast

to simple conditions, in which compensation for more pronounced functional

alterations might be required.
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